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ÖZET 

Bu çalışmada öncelikle Öklidyen 4-uzaydaki bir uzay eğrisi için Frenet çatısı 

ile ilgili tanımlar ile teoremler verilmiştir. Burada Frenet çatılı bir eğri için Frenet 

vektörleri, Frenet türev denklemleri ve eğrinin 𝜅 , 𝜏  ve 𝜂  eğriliklerinden 

bahsedilmiştir. 4-boyutlu Öklidyen uzayda yüzeyler ile ilgili kavramlar ve onların 

bir çeşidi olan kanal yüzeyleri için verilmiş incelemeler üzerinde durulmuştur. 

Bu uzayda kanal yüzeyinin özel hali olan merkezi düzgün bir eğri üzerindeki 

noktalar ve bu eğrinin bu noktalardaki normal düzleminde bulunan sabit yarıçaplı 

bir çemberin oluşturduğu dairesel yüzey olan tüp (tubular) yüzey incelenmiştir. 

Öklid 4-uzayında tüp yüzeyinin Frenet çatılı genel denklemi verilmiştir. Genel 

denklem kullanılarak birinci ve ikinci kısmi türevler, yüzeyin 𝑼1 birim normal 

vektör alanı ve 𝑼1  birim normal vektör alanına Gram-Schmidt yöntemi 

uygulanarak 𝑼2 birim normal vektör alanı bulunup ardından yüzeyin birinci ve 

ikinci temel form katsayıları elde edilmiştir. Ek olarak yüzeyin 𝑼1 ve 𝑼2 birim 

normal vektör alanları için Gauss eğrilikleri ve ortalama eğrilikler hesaplanmıştır. 

Elde edilen hesaplar için bir örnek verilmiş ve yüzeyin izdüşüm uzaylarındaki 

şekilleri çizdirilmiştir. 

 

Anahtar Kelimeler: Öklid 4-uzayı, Frenet çatısı, Tüp yüzeyi 
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ABSTRACT  

In this research, the definitions and theorems of a space curve with respect to 

the Frenet frame are initially presented in Euclidean 4-space. These are Frenet 

vectors, Frenet derivative equations and curvatures 𝜅, 𝜏 and 𝜂 of a curve with 

Frenet frame. The concepts related to surfaces in 4-dimensional Euclidean space 

and their variants, such as canal surfaces, are analyzed. In this space, a special 

case of the canal surface, the tube surface, a circular surface formed by points on 

a central smooth curve and a circle of constant radius in the normal plane of this 

curve at these points, is studied. The general equation of the tube surface in 

Euclidean 4-space with Frenet frame is given. Using the general equation, the 

first and second partial derivatives, the 𝑼1 unit normal vector field of the surface 

and the 𝑼2 unit normal vector field by applying the Gram-Schmidt method to 

the 𝑼1  unit normal vector field are found and then the first and second 

fundamental form coefficients of the surface are obtained. In addition, Gaussian 

curvatures and mean curvatures are calculated for 𝑼1 and 𝑼2 unit normal vector 

fields of the surface. An example is given for the obtained calculations and the 

surface shapes in projection spaces are plotted. 

 

Keywords: Euclid 4-space, Frenet frame, Tube surface 
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INTRODUCTION   

Frenet equations were independently discovered by Frenet in 1847 and Serret 

in 1851.  In 1760, Euler was the first to study curves and surfaces formed by the 

intersection of various planes. The canal surface, a specific type of surface, was 

defined by Monge in 1850. Canal surfaces are parametrized with distinct frames 

in 𝔼4. A tube surface, which is a special case of a canal surface, is the envelope 

of a moving sphere with a constant radius function 𝑟(𝑡) , and is simpler to 

describe both analytically and kinematically (Doğan and Yaylı, 2017).  Blaga 

(2005) introduced a technique for parameterizing tubular surfaces by utilizing the 

parameter along the generating curve and expressing the position vector of a point 

on the surface as 𝜓 . Numerous studies in the literature have explored these 

surfaces in similar spaces (Bayram et al., 2009; Alessio, 2009; Bulca et al., 2017). 

Otsuki demonstrated the existence of a graphical representation of a surface in 

𝔼4  and investigated the isometric immersions of two-dimensional connected 

oriented manifolds in 𝔼4 . Furthermore, Otsuki (1966) provided a 

characterization of surfaces within hyperplanes, compact surfaces with constant 

mean curvature and non-negative Gaussian curvature, as well as surfaces in the 

three-dimensional sphere in 𝔼4 . In 2008, Ganchev and Milousheva classified 

several important classes of surfaces in four-dimensional Euclidean space, 

distinguished by their invariants. Óláh-Gál and Pál (2009) studied the global 

isometry of two surfaces in 𝔼4, demonstrating that, while these surfaces are not 

globally isomorphic, they remain globally isometric. Mello (2009) analyzed the 

properties of surfaces immersed in 𝔼4 and provided conditions under which such 

surfaces exhibit hypersphericity. Kişi et al. (2019) examined the conditions under 

which canal surfaces with parallel transport frame vectors in 𝔼4are flat, minimal, 

or linear Weingarten, and also determined the normal vectors of canal surfaces. 

Finally, Bulca et al. (2017) characterized surfaces in 𝔼4 using the coefficients of 

the first and second fundamental forms. Tube surfaces have been studied using 

different spaces and different frames (Maekawa et. al., 1998; Abdel-Aziz and 

Saad, 2011; Dede, 2013; Dede et. al., 2015; Ekici et. al., 2017; Kızıltuğ et.al., 

2019; Tozak et. al., 2019; Yağbasan and Ekici, 2023; Yağbasan et. al., 2023; 

Yağbasan et. al., 2023a ). Similarly, different studies are given for the canal 

surface, which is the general form of the tube surface (Xu et. al., 2006; Kim et. 

al., 2016; Uçum and İlarslan, 2016; Doğan and Yaylı, 2017; Bulca et. al., 2017; 

Kaymanlı et. al., 2018; Şekerci and Çimdiker, 2019). In addition, there have been 

studies on surfaces created using different frame vectors in 3 and 4-space 

(Kaymanlı et. al., 2022; Ekici et. al., 2023; Ekici Coşkun and Akça, 2023; Dede 

et. al., 2024). In this research, investigations into tube surfaces are discussed in 
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𝔼4. We offer the parametrization of the tube surface using the Frenet frame in 

𝔼4. Furthermore, we are given the first and second unit normal vector fields, 

principal curvatures, Gaussian curvature, and mean curvature of tube surfaces in 

4-dimensional space. Finally, an example of a tube surface is provided, with 

corresponding figures of the surface plotted in projection spaces. 

 

PRELIMINARIES 

Let  𝑿 = (𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝒀 = (𝑦1, 𝑦2, 𝑦3, 𝑦4)  and 𝒁 = (𝑧1, 𝑧2, 𝑧3, 𝑧4)  be 

three vectors in 𝔼4. Here the inner product is expressed as < 𝑿, 𝒀 >= 𝑥1𝑦1 +

𝑥2𝑦2 + 𝑥3𝑦3 + 𝑥4𝑦4, the norm of a vector as ‖𝑿‖ = √< 𝑿, 𝑿 > and the vector 

product as 

 

𝑿 ∧ 𝒀 ∧ 𝒁 = (𝑥2𝑦3𝑧4 − 𝑥2𝑦4𝑧3 − 𝑥3𝑦2𝑧4 + 𝑥3𝑦4𝑧2 + 𝑥4𝑦2𝑧3 − 𝑥4𝑦3𝑧2)𝒆1

−(𝑥1𝑦3𝑧4 − 𝑥1𝑦4𝑧3 − 𝑥3𝑦1𝑧4 + 𝑥3𝑦4𝑧1 + 𝑥4𝑦1𝑧3 − 𝑥4𝑦3𝑧1)𝒆2

+(𝑥1𝑦2𝑧4 − 𝑥1𝑦4𝑧2 − 𝑥2𝑦1𝑧4 + 𝑥2𝑦4𝑧1 + 𝑥4𝑦1𝑧2 − 𝑥4𝑦2𝑧1)𝒆3

−(𝑥1𝑦2𝑧3 − 𝑥1𝑦3𝑧2 − 𝑥2𝑦1𝑧3 + 𝑥2𝑦3𝑧1 + 𝑥3𝑦1𝑧2 − 𝑥3𝑦2𝑧1)𝒆4

 (1) 

 

where 𝒆1 ∧ 𝒆2 ∧ 𝒆3 = 𝒆4 , 𝒆2 ∧ 𝒆3 ∧ 𝒆4 = 𝒆1 , 𝒆3 ∧ 𝒆4 ∧ 𝒆1 = 𝒆2  and   𝒆4 ∧

𝒆1 ∧ 𝒆2 =  −𝒆3  (Allesio, 2009; Elsayied et. al., 2021).If < 𝛼′, 𝛼′ >= 1 , 

𝑎(𝑡)  =  𝑎 ∶  𝐼 ⊂ ℝ →  𝔼4  is the unit speed curve. The Frenet equations of 

variation for the 𝑎(𝑡) curve given by the spring parameter are  

 

[

𝑻′
𝑵′
𝑩𝟏

′

𝑩𝟐
′

] = [

0 𝜅 0 0
−𝜅 0 𝜏 0
0 −𝜏 0 𝜂
0 0 −𝜂 0

] [

𝑻
𝑵
𝑩1

𝑩𝟐

] (2) 

 

where the functions  

 

𝜅 = 〈𝑻′, 𝑵〉, 𝜏 = 〈𝑵′, 𝑩1〉, 𝜂 = 〈𝑩1
′ , 𝑩2〉 (3) 

 

respectively (Gray, 1993; Gluck, 1966). A canal surface, centered at a spine curve 

𝑎(𝑡) with radius 𝑟(𝑡), is parametrized by 

 

𝜓(𝑡, 𝑣) = 𝑎(𝑡) + 𝑟(𝑡)(𝑐𝑜𝑠𝑣𝒆1(𝑡) + 𝑠𝑖𝑛𝑣𝒆𝟐(𝑡)) (4) 

  

where 𝑟(𝑡) is a real differentiable function (Kişi et. al., 2019; Bulca et. al., 2017). 

Let 𝑀  be a smooth surface in ℝ4  given with the patch 𝜓: 𝑈 ⊂ ℝ2 →  ℝ4,

𝜓(𝑡, 𝑣). The tangent space to 𝑀 at an arbitrary point 𝑝 = 𝜓(𝑡, 𝑣) of 𝑀 span 
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{𝜓𝑡 , 𝜓𝑣}. In the chart (𝑡, 𝑣) the coefficients of the first fundamental form of 𝑀 

are given by 

 

𝐸 = 〈𝜓𝑡 , 𝜓𝑡〉, 𝐹 = 〈𝜓𝑡 , 𝜓𝑣〉, 𝐺 = 〈𝜓𝑣, 𝜓𝑣〉  and  W = 𝐸𝐺 − 𝐹2 (5) 

 

where <, > is the Euclidean inner product (Mello, 2009; Bayram et. al., 2009). 

Consider 𝜓𝑡𝑡 , 𝜓𝑡𝑣, 𝜓𝑣𝑣 as the second-order partial derivatives, and let 

𝑼1, 𝑼2, … , 𝑼𝑛−2 represent the normal vector fields of the manifold 𝑀 with the 

coefficients of its second fundamental form given by, 1 ≤ 𝑘 ≤ 𝑛 − 2, 

 

𝐿𝑘 = 〈𝜓𝑡𝑡 , 𝑼𝑘〉, 𝑀𝑘 = 〈𝜓𝑡𝑣, 𝑼𝑘〉   𝑎𝑛𝑑   𝑁𝑘 = 〈𝜓𝑣𝑣 , 𝑼𝑘〉. (6) 

 

The Gaussian and mean curvatures of the surface are typically expressed as  

𝐾 =
𝐿𝑁 − 𝑀2

𝐸𝐺 − 𝐹2
 𝑎𝑛𝑑 𝐻 =

𝐿𝐺 − 2𝑀𝐹 + 𝑁𝐸

𝐸𝐺 − 𝐹2
. (7) 

 

respectively (Chen and Piccini, 1973; Mello, 2009; Bulca et. al., 2017). 

 

TUBE SURFACES CREATED WİTH 𝑻  AND 𝑩1  FRENET 

VECTORS IN 4-DIMENSIONAL SPACE 

In order to form the equation of the 2-dimensional Frenet frame tube surface 

in 4-dimensional space, a circle that accepts each point on 𝛼(𝑡) as the centre in 

the plane stretched by 𝑻 and 𝑩1 vectors must be moved. 

Thus, the formed tube surface 

 

𝜓(𝑡, 𝑣) = 𝑎(𝑡) + 𝑟(𝑐𝑜𝑠𝑣𝑻(𝑡) + 𝑠𝑖𝑛𝑣𝑩1(𝑡)) (8) 

 

The necessary theorems and proofs for the parametric equation are given. Here 

r ∈ R is taken. Frenet curvatures are taken constant throughout this study. 

Theorem Let 𝑀 ⊂  𝔼4 be a tube surface at a distance 𝑟 from the spine curve 

𝛼(𝑡)  according  to Frenet  frame {𝑻, 𝑵, 𝑩1, 𝑩2}   with  parametrization 

𝜓(𝑡, 𝑣), given by 𝜓: 𝑈 ⊂ 𝔼2 →  𝔼4, (𝑡, 𝑣) ∈ 𝑈 and let tangent space to 𝑀 at a 

point 𝑝 ∈ 𝜓(𝑡, 𝑣) be spanned by {𝜓𝑡 , 𝜓𝑣}. As a result, the following assertions 

are true: 
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1. The unit normal vector fields 𝑼1 and 𝑼2 of tube surface in 𝔼4 are found 

to be  

 

𝑼1 =
−𝑟𝜂𝑠𝑖𝑛𝑣𝑵 + 𝑟(𝜅𝑐𝑜𝑠𝑣 − 𝜏𝑠𝑖𝑛𝑣)𝑩2

𝑟√𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2
  

 

and 

 

𝑼2 =
𝑟𝜏𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣𝑻 + (𝑟𝜏 − 𝑟𝜏𝑐𝑜𝑠2𝑣)𝑵 − 𝑐𝑜𝑠𝑣𝑩1

𝑟√𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2
  

 

respectively. 

 

2. Gaussian curvature 𝐾1 and Mean curvature 𝐻1 of tube surface with unit 

normal vector fields 𝑼1 in 𝔼4 are obtained as 

 

𝐾1 =
−𝑟2𝜅2𝜂2[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2]−1

𝑟2[1 + 𝑟2𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝑟2𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝑟2(𝜂2 + 𝜏2)] − 𝑟2𝑠𝑖𝑛2𝑣
 

 

 

and 

 

𝐻1 =
𝑟2𝑠𝑖𝑛𝑣[𝜅𝜂 + 𝑟𝜂(𝜏′𝑠𝑖𝑛𝑣 − 𝜅′𝑐𝑜𝑠𝑣) + 𝑟𝜂′(𝜅𝑐𝑜𝑠𝑣 − 𝜏𝑠𝑖𝑛𝑣)](𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2)−1/2

𝑟2(1 + 𝑟2[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) + (𝜂2 + 𝜏2) − 𝜅𝜏𝑠𝑖𝑛2𝑣]) − 𝑟2𝑠𝑖𝑛2𝑣
  

 

respectively. 

 

3. Gaussian curvature 𝐾2 and Mean curvature 𝐻2 of tube surface with unit 

normal vector fields 𝑼2 in 𝔼4 are obtained as 

 

𝐾2 =
−𝑟2𝜂[2𝑟2𝜅𝜏𝜂𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣(𝑐𝑜𝑠2𝑣 − 1) + 𝑟2𝑐𝑜𝑠2𝑣(𝜅2𝜂 − 2𝜏2𝜂 − 2𝑟2𝜏3)]

[𝑐𝑜𝑠2𝑣(𝑟2𝜂2 − 1) − 𝑟2𝜂2][𝑟2(1 + 𝑟2𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝑟2𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝑟2(𝜂2 + 𝜏2)) − 𝑟2𝑠𝑖𝑛2𝑣]

−
𝑟2𝜂[𝑟2𝜂𝑐𝑜𝑠4𝑣(𝜏2 − 𝜅2 + 𝜂2) + 𝑟𝜂′𝑐𝑜𝑠𝑣(1 − 𝑐𝑜𝑠2𝑣) + 𝑟2𝜂(𝜏2 + 𝜂2) + 𝜂𝑐𝑜𝑠4𝑣]

[𝑐𝑜𝑠2𝑣(𝑟2𝜂2 − 1) − 𝑟2𝜂2][𝑟2(1 + 𝑟2𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝑟2𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝑟2(𝜂2 + 𝜏2)) − 𝑟2𝑠𝑖𝑛2𝑣]

  

and 

𝐻2 =
2𝜂𝑐𝑜𝑠2𝑣𝑠𝑖𝑛𝑣(1 + 𝑟2𝜂2 − 𝑟2𝜅2) + 4𝑟2𝜅𝜏𝜂𝑐𝑜𝑠𝑣(1 − 𝑐𝑜𝑠2𝑣)

√𝑟2𝜂2𝑠𝑖𝑛2𝑣 + 𝑐𝑜𝑠2𝑣[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) + 𝑟2(𝜂2 + 𝜏2) − 2𝑟2𝜅𝜏𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 + 𝑐𝑜𝑠2𝑣]

+
2𝑟2𝜂𝑠𝑖𝑛𝑣(𝜏2𝑐𝑜𝑠2𝑣 − 𝜂2 − 𝜏2) + 𝜂𝑠𝑖𝑛𝑣 + 𝑟𝜂′𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣

√𝑟2𝜂2𝑠𝑖𝑛2𝑣 + 𝑐𝑜𝑠2𝑣[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) + 𝑟2(𝜂2 + 𝜏2) − 2𝑟2𝜅𝜏𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 + 𝑐𝑜𝑠2𝑣]

  

 

respectively. 
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Proof Tube surface, at a distance 𝑟 from the spine curve 𝛼(𝑡) with Frenet 

frame  {𝑻, 𝑵, 𝑩1, 𝑩2} are parametrized by 

 

𝜓(𝑡, 𝑣) = 𝑎(𝑡) + 𝑟(𝑐𝑜𝑠𝑣𝑻 + 𝑠𝑖𝑛𝑣𝑩1)  

 

The partial derivatives of 𝜓(𝑡, 𝑣), with respect to 𝑡 and 𝑣, are determined by 

 

𝜓𝑡 = 1 + (𝑟𝜅𝑐𝑜𝑠𝑣 − 𝑟𝜏𝑠𝑖𝑛𝑣)𝑵 + 𝑟𝜂𝑠𝑖𝑛𝑣𝑩2 (9) 

and 

𝜓𝑣 = 𝑟(−𝑠𝑖𝑛𝑣𝑻 + 𝑐𝑜𝑠𝑣𝑩1). (10) 

 

Then, second order partial derivatives of 𝜓(𝑡, 𝑣), with respect to 𝑡 and 𝑣, are 

given as 

 

𝜓𝑡𝑡 = (𝑟𝜅𝜏𝑠𝑖𝑛𝑣 − 𝑟𝜅2𝑐𝑜𝑠𝑣)𝑻 + 𝜅𝑵 + (𝑟𝜅𝜏𝑐𝑜𝑠𝑣 − 𝑟𝜏2𝑠𝑖𝑛𝑣 − 𝑟𝜂3𝑠𝑖𝑛𝑣)𝑩1 
(11) 

 

  

𝜓𝑡𝑣 = (−𝑟𝜅𝑠𝑖𝑛𝑣 − 𝑟𝜏𝑐𝑜𝑠𝑣)𝑵 + 𝑟𝜂𝑐𝑜𝑠𝑣𝑩2 (12) 

and 

𝜓𝑣𝑣 = −𝑟𝑐𝑜𝑠𝑣𝑻 − 𝑟𝑠𝑖𝑛𝑣𝑩1. (13) 

 

The unit normal vector fields 𝑼1 and 𝑼2 of the surface should be provided 

with the following conditions 

 

< 𝜓𝑡 , 𝑼1 >= 0 < 𝜓𝑡 , 𝑼2 >= 0
< 𝜓𝑣, 𝑼1 >= 0 < 𝜓𝑣, 𝑼2 >= 0 𝑎𝑛𝑑 < 𝑼1, 𝑼2 >= 0

< 𝑼1, 𝑼1 >= 1 < 𝑼2, 𝑼2 >= 1

 (14) 

 

where 𝜓𝑡 and 𝜓𝑣 are the partial derivatives of 𝜓(𝑡, 𝑣), with respect to 𝑡 and 

𝑣. The unit normal vector field 𝑼1 of tube surface is obtained as 

 

𝑼1 =
−𝑟𝜂𝑠𝑖𝑛𝑣𝑵 + 𝑟(𝜅𝑐𝑜𝑠𝑣 − 𝜏𝑠𝑖𝑛𝑣)𝑩2

𝑟√𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2
 (15) 

 

using equation 

𝑼1 =
𝑎1𝑻 + 𝑎2𝑵 + 𝑎3𝑩1 + 𝑎4𝑩𝟐

√𝑎1
2 + 𝑎2

2 + 𝑎3
2 + 𝑎4

2
  

 

where 𝑎3 = 0 and 𝑎1 = 0 then 𝑎4 = 𝑟𝜅𝑐𝑜𝑠𝑣 − 𝑟𝜏𝑠𝑖𝑛𝑣 and 𝑎2 = −𝑟𝜂𝑠𝑖𝑛𝑣.  
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Since < 𝑼1, 𝑼1 >= 1,  𝑼1 is the unit normal vector field of the tube surface. 

Then using methods of Gram Schmidt with 𝑼1, the unit vector field 𝑼2 is given 

as 

 

𝑼2 =
𝑟𝜏𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣𝑻 + (𝑟𝜏 − 𝑟𝜏𝑐𝑜𝑠2𝑣)𝑵 − 𝑐𝑜𝑠𝑣𝑩1

𝑟√𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2
 (16) 

 

Using equation (14), the vector fields  𝑼1 and 𝑼2  are identified as unit 

normal vector fields for the tube surfaces. By substituting equations (9) and (10) 

into equation (5), the coefficients of the first fundamental form for the tube 

surfaces 

 

𝐸 = 1 + 𝑟2[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) + 𝜂2 + 𝜏2 − 𝜅𝜏𝑠𝑖𝑛2𝑣]
𝐹 = −𝑟𝑠𝑖𝑛𝑣
𝐺 = 𝑟2

 (17) 

and 

𝑊 = 𝑟2(1 + 𝑟2[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) + 𝜂2 + 𝜏2 − 𝜅𝜏𝑠𝑖𝑛2𝑣]) − 𝑟2𝑠𝑖𝑛2𝑣  

 

are subsequently derived. Equations (6), (11), (12), (13), and (15) lead to the 

coefficients of the second fundamental form of the tube surface with the unit 

vector field 𝑼1 in 𝔼4 obtained as, 

 

𝐿1 =
𝑟𝜅𝜂𝑠𝑖𝑛𝑣

𝑟√𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2

𝑀1 =
𝑟𝜅𝜂

√𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2

𝑁1 = 0

 (18) 

 

Substituting equations (17) and (18) into equation (7) implies that Gaussian 

and mean curvatures with respect to 𝑼1 following as 

 

𝐾1 =
−𝑟2𝜅2𝜂2[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2]−1

𝑟2[1 + 𝑟2𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝑟2𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝑟2(𝜂2 + 𝜏2)] − 𝑟2𝑠𝑖𝑛2𝑣
  

and  

𝐻1 =
𝑠𝑖𝑛𝑣[𝜅𝜂 + 𝑟𝜂(𝜏′𝑠𝑖𝑛𝑣 − 𝜅′𝑐𝑜𝑠𝑣) + 𝑟𝜂′(𝜅𝑐𝑜𝑠𝑣 − 𝜏𝑠𝑖𝑛𝑣)](𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝜂2 + 𝜏2)−1/2

(1 + 𝑟2[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) + 𝜂2 + 𝜏2 − 𝜅𝜏𝑠𝑖𝑛2𝑣]) − 𝑠𝑖𝑛2𝑣
  

 

equations (6), (11), (12), (13), and (16) lead to the coefficients of the second 

fundamental form of the tube surface with the unit vector field 𝑼2  in 

𝔼4 obtained as, 
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𝐿2 =
−𝑟2𝜂𝑠𝑖𝑛𝑣[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) + 𝜂2 + 𝜏2 − 𝜅𝜏𝑠𝑖𝑛2𝑣]

√𝑐𝑜𝑠2𝑣 + 𝑟𝜂2(1 + 𝑐𝑜𝑠2𝑣)

𝑀2 =
−𝑟𝜂𝑐𝑜𝑠2𝑣

√𝑐𝑜𝑠2𝑣 + 𝑟𝜂2(1 + 𝑐𝑜𝑠2𝑣)

𝑁2 =
−𝑟2𝜂𝑠𝑖𝑛𝑣

√𝑐𝑜𝑠2𝑣 + 𝑟𝜂2(1 + 𝑐𝑜𝑠2𝑣)

 (19) 

 

Substituting equations (17) and (19) into equation (7) implies that Gaussian 

and mean curvatures with respect to 𝑼2 following as 

𝐾2 =
−𝑟2𝜂[−2𝑟2𝜅𝜏𝜂𝑐𝑜𝑠𝑣𝑠𝑖𝑛3𝑣 + 𝑟2𝑐𝑜𝑠2𝑣(𝜅2𝜂 − 2𝜏2𝜂 − 2𝑟2𝜏3)]

[𝑐𝑜𝑠2𝑣(𝑟2𝜂2 − 1) − 𝑟2𝜂2][𝑟2(1 + 𝑟2𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝑟2𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝑟2(𝜂2 + 𝜏2)) − 𝑟2𝑠𝑖𝑛2𝑣]

−
𝑟2𝜂[𝑟2𝜂𝑐𝑜𝑠4𝑣(𝜏2 − 𝜅2 + 𝜂2) + 𝑟𝜂′𝑐𝑜𝑠𝑣𝑠𝑖𝑛2𝑣 + 𝑟2𝜂(𝜏2 + 𝜂2) + 𝜂𝑐𝑜𝑠4𝑣]

[𝑐𝑜𝑠2𝑣(𝑟2𝜂2 − 1) − 𝑟2𝜂2][𝑟2(1 + 𝑟2𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) − 𝑟2𝜅𝜏𝑠𝑖𝑛2𝑣 + 𝑟2(𝜂2 + 𝜏2)) − 𝑟2𝑠𝑖𝑛2𝑣]

  

and 

𝐻2 =
2𝜂𝑐𝑜𝑠2𝑣𝑠𝑖𝑛𝑣(1 + 𝑟2𝜂2 − 𝑟2𝜅2) + 4𝑟2𝜅𝜏𝜂𝑐𝑜𝑠𝑣𝑠𝑖𝑛2𝑣

[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) + 𝑟2(𝜂2 + 𝜏2) − 2𝑟2𝜅𝜏𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 + 𝑐𝑜𝑠2𝑣]√𝑟2𝜂2𝑠𝑖𝑛2𝑣 + 𝑐𝑜𝑠2𝑣

+
2𝑟2𝜂𝑠𝑖𝑛𝑣(𝜏2𝑐𝑜𝑠2𝑣 − 𝜂2 − 𝜏2) + 𝜂𝑠𝑖𝑛𝑣 + 𝑟𝜂′𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣

[𝑐𝑜𝑠2𝑣(𝜅2 − 𝜏2 − 𝜂2) + 𝑟2(𝜂2 + 𝜏2) − 2𝑟2𝜅𝜏𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 + 𝑐𝑜𝑠2𝑣]√𝑟2𝜂2𝑠𝑖𝑛2𝑣 + 𝑐𝑜𝑠2𝑣
.

  

 

Corollary If the Gaussian and mean curvatures corresponding to the unit 

normal vector fields obtained for the Frenet vectors 𝑻 and 𝑩1  are similarly 

calculated using the shape operators corresponding to the unit normal vector 

fields, the same result is obtained. 

 

TUBE SURFACES CREATED WİTH 𝑻  AND 𝑩2  FRENET 

VECTORS IN 4-DIMENSIONAL SPACE 

In order to form the equation of the 2-dimensional Frenet frame tube surface 

in 4-dimensional space, a circle that accepts each point on 𝛼(𝑡) as the centre in 

the plane stretched by 𝑻 and 𝑩2  vectors must be moved. Thus, the formed tube 

surface 

 

𝜓(𝑡, 𝑣) = 𝑎(𝑡) + 𝑟(𝑐𝑜𝑠𝑣𝑻(𝑡) + 𝑠𝑖𝑛𝑣𝑩2(𝑡)) (20) 

 

The necessary theorems and proofs for the parametric equation are given. Here 

r ∈ R is taken.  

Theorem Let 𝑀 ⊂  𝔼4 be a tube surface at a distance 𝑟 from the spine curve 

𝛼(𝑡)  according to Frenet frame {𝑻, 𝑵, 𝑩1, 𝑩2}  with parametrization 𝜓(𝑡, 𝑣) , 

given by 𝜓: 𝑈 ⊂ 𝔼2 →  𝔼4, (𝑡, 𝑣) ∈ 𝑈 and let tangent space to 𝑀 at a point 

𝑝 ∈ 𝜓(𝑡, 𝑣) be spanned by {𝜓𝑡 , 𝜓𝑣}. Then, the following statements hold: 
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1. Unit normal vector fields 𝑼1 and 𝑼2 of tube surface in 𝔼4 are obtained 

as 

𝑼1 =
𝑟𝑐𝑜𝑠𝑣𝑻 + (𝜂𝑠𝑖𝑛𝑣 − 1)𝑵 + 𝜅𝑐𝑜𝑠𝑣𝑩1 − 𝑟𝜅𝑠𝑖𝑛𝑣𝑩2

√1 + 𝜅2(𝑟2 + 𝑐𝑜𝑠2𝑣) + 𝜂2𝑠𝑖𝑛2𝑣 − 2𝜂𝑠𝑖𝑛𝑣
  

and 

𝑼2 =
−𝑟𝜅𝑐𝑜𝑠𝑣(𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣 − 𝜂𝑠𝑖𝑛𝑣)𝑻 + 𝜅2(𝑟2𝜂𝑠𝑖𝑛𝑣 + 𝑐𝑜𝑠2𝑣)𝑵

𝜅[1 + 𝜂2 − 2𝜂𝑠𝑖𝑛𝑣 + 𝑟2𝜅2 + 𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2)]3/2[𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣]√𝑐𝑜𝑠2𝑣(1 + 𝑟2𝜅2) + 𝑟2𝜂2𝑠𝑖𝑛2𝑣

−
𝜅𝑐𝑜𝑠𝑣(𝜂𝑠𝑖𝑛𝑣 − 1 − 𝑟2𝜅2)𝑩1 + 𝜅(𝑟𝑐𝑜𝑠2𝑣𝑠𝑖𝑛𝑣(𝜅2 − 𝜂2) + 𝑟𝜂2𝑠𝑖𝑛𝑣 − 𝑟𝜂𝑠𝑖𝑛2𝑣)𝑩2

𝜅[1 + 𝜂2 − 2𝜂𝑠𝑖𝑛𝑣 + 𝑟2𝜅2 + 𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2)]3/2[𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣]√𝑐𝑜𝑠2𝑣(1 + 𝑟2𝜅2) + 𝑟2𝜂2𝑠𝑖𝑛2𝑣

 

 

respectively. 

 

2. Gaussian curvature 𝐾1 and Mean curvature 𝐻1 of tube surface with unit 

normal vector fields 𝑼1 in 𝔼4 are obtained as 

 

𝐾1 =
𝑟2𝜅[𝜂𝑠𝑖𝑛𝑣(𝜅 + 𝑟𝜏) + 𝑐𝑜𝑠2𝑣(𝑟2𝜅3 − 𝑟𝜅2𝜏 − 𝑟2𝜏𝜂2 + 𝜅) + 𝜂2(𝑟2𝜅 − 𝜅 − 𝑟𝜏)]

[𝑟2 + 𝑟4(𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣) − 𝑟2𝑠𝑖𝑛2𝑣][1 + 𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2) + 𝑟2𝜅2 + 𝜂2 − 2𝜂𝑠𝑖𝑛𝑣]
  

and 

𝐻1 =
−𝑟2[𝜂𝑠𝑖𝑛𝑣(𝜅 + 𝑟𝜏) + 𝑐𝑜𝑠2𝑣(2𝑟2𝜅3 − 𝑟𝜅2𝜏 − 2𝑟2𝜅𝜂2 + 𝑟𝜏𝜂2 + 2𝜅) + 𝑟𝜂2(2𝑟𝜅 − 𝜏)]

[𝑟2 + 𝑟4(𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣) − 𝑟2𝑠𝑖𝑛2𝑣][1 + 𝜂2𝑠𝑖𝑛2𝑣 + 𝜅2(𝑐𝑜𝑠2𝑣 + 𝑟2)]
  

 

respectively. 

 

3. Gaussian curvature 𝐾2 and Mean curvature 𝐻2 of tube surface with unit 

normal vector fields 𝑼2 in 𝔼4 are obtained as 

 

𝐾2 =
−𝜅2𝜂2

[𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣][𝑟2𝜂2𝑠𝑖𝑛2𝑣 + 𝑟2𝜅2𝑐𝑜𝑠2𝑣 + 𝑐𝑜𝑠2𝑣]
 

 

 

and 

𝐻2 =
[−𝜅𝜂𝑠𝑖𝑛𝑣 + 𝑟𝜏𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2) + 𝑟𝜏𝜂2]

[𝑟2𝜂2𝑠𝑖𝑛2𝑣 + 𝑟2𝜅2𝑐𝑜𝑠2𝑣 + 𝑐𝑜𝑠2𝑣]√𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣
  

 

respectively. 

 

Proof Tube surface, at a distance 𝑟 from the spine curve 𝛼(𝑡) with Frenet 

frame  {𝑻, 𝑵, 𝑩1, 𝑩2} are parametrized by 

 

𝜓(𝑡, 𝑣) = 𝑎(𝑡) + 𝑟(𝑐𝑜𝑠𝑣𝑩1 + 𝑠𝑖𝑛𝑣𝑩2)  

 

  

14



The partial derivatives of 𝜓(𝑡, 𝑣), with respect to 𝑡 and 𝑣, are determined by 

𝜓𝑡 = 𝑻 + 𝑟𝜅𝑐𝑜𝑠𝑣𝑵 − 𝑟𝜂𝑠𝑖𝑛𝑣𝑩1 (21) 

and 

𝜓𝑣 = 𝑟(−𝑠𝑖𝑛𝑣𝑻 + 𝑐𝑜𝑠𝑣𝑩2). (22) 

 

Then, second order partial derivatives of 𝜓(𝑡, 𝑣), with respect to 𝑡 and 𝑣, are 

given as 

𝜓𝑡𝑡 = −𝑟𝜅2𝑐𝑜𝑠𝑣𝑻 + (𝜅 + 𝑟𝜏𝜂𝑠𝑖𝑛𝑣)𝑵 + 𝑟𝜅𝜏𝑐𝑜𝑠𝑣𝑩1 − 𝑟𝜂2𝑠𝑖𝑛𝑣𝑩2 
(23) 

 

  

𝜓𝑡𝑣 = −𝑟𝜅𝑠𝑖𝑛𝑣𝑵 − 𝑟𝜂𝑐𝑜𝑠𝑣𝑩1 (24) 

and 

𝜓𝑣𝑣 = −𝑟𝑐𝑜𝑠𝑣𝑻 − 𝑟𝑠𝑖𝑛𝑣𝑩2. (25) 

 

The unit normal vector fields 𝑼1 and 𝑼2 of the surface should be provided 

with the following conditions 

 

< 𝜓𝑡 , 𝑼1 >= 0 < 𝜓𝑡 , 𝑼2 >= 0
< 𝜓𝑣, 𝑼1 >= 0 < 𝜓𝑣, 𝑼2 >= 0 𝑎𝑛𝑑 < 𝑼1, 𝑼2 >= 0

< 𝑼1, 𝑼1 >= 1 < 𝑼2, 𝑼2 >= 1

 (26) 

 

where 𝜓𝑡 and 𝜓𝑣 are the partial derivatives of 𝜓(𝑡, 𝑣), with respect to 𝑡 and 

𝑣. 

The unit normal vector field 𝑼1 of tube surface is obtained as 

 

𝑼1 =
𝑟𝑐𝑜𝑠𝑣𝑻 + (𝜂𝑠𝑖𝑛𝑣 − 1)𝑵 + 𝜅𝑐𝑜𝑠𝑣𝑩1 − 𝑟𝜅𝑠𝑖𝑛𝑣𝑩2

√1 + 𝜅2(𝑟2 + 𝑐𝑜𝑠2𝑣) + 𝜂2𝑠𝑖𝑛2𝑣 − 2𝜂𝑠𝑖𝑛𝑣
 (27) 

 

using equation 

𝑼1 =
𝑎1𝑻 + 𝑎2𝑵 + 𝑎3𝑩1 + 𝑎4𝑩𝟐

√𝑎1
2 + 𝑎2

2 + 𝑎3
2 + 𝑎4

2
  

 

where 𝑎3 = 𝑐𝑜𝑠𝑣 and 𝑎1 = 𝑟𝜏𝑐𝑜𝑠𝑣 then 𝑎4 = 𝑠𝑖𝑛𝑣 and 𝑎2 = 1. Since     <

𝑼1, 𝑼1 >= 1,  𝑼1 is the unit normal vector field of the tube surface. Then using 

methods of Gram Schmidt with 𝑼1, the unit vector field 𝑼2 is given as 

 

𝑼2 =
−𝑟𝜅𝑐𝑜𝑠𝑣(𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣 − 𝜂𝑠𝑖𝑛𝑣)𝑻 + 𝜅2(𝑟2𝜂𝑠𝑖𝑛𝑣 + 𝑐𝑜𝑠2𝑣)𝑵

𝜅[1 + 𝜂2 − 2𝜂𝑠𝑖𝑛𝑣 + 𝑟2𝜅2 + 𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2)]3/2[𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣]√𝑐𝑜𝑠2𝑣(1 + 𝑟2𝜅2) + 𝑟2𝜂2𝑠𝑖𝑛2𝑣

−
𝜅𝑐𝑜𝑠𝑣(𝜂𝑠𝑖𝑛𝑣 − 1 − 𝑟2𝜅2)𝑩1 + 𝜅(𝑟𝑐𝑜𝑠2𝑣𝑠𝑖𝑛𝑣(𝜅2 − 𝜂2) + 𝑟𝜂2𝑠𝑖𝑛𝑣 − 𝑟𝜂𝑠𝑖𝑛2𝑣)𝑩2

𝜅[1 + 𝜂2 − 2𝜂𝑠𝑖𝑛𝑣 + 𝑟2𝜅2 + 𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2)]3/2[𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣]√𝑐𝑜𝑠2𝑣(1 + 𝑟2𝜅2) + 𝑟2𝜂2𝑠𝑖𝑛2𝑣

 (28) 
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Using equation (26), the vector fields  𝑼1 and 𝑼2  are identified as unit 

normal vector fields for the tube surfaces. By substituting equations (21) and (22) 

into equation (5), the coefficients of the first fundamental form for the tube 

surfaces 

𝐸 = 1 + 𝑟2𝜅2𝑐𝑜𝑠2𝑣 + 𝑟2𝜂2𝑐𝑜𝑠2𝑣
𝐹 = −𝑟𝑠𝑖𝑛𝑣
𝐺 = 𝑟2

 (29) 

and 

𝑊 = 𝑟2 + 𝑟4(𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣) − 𝑟2𝑠𝑖𝑛2𝑣  

 

are subsequently derived. 

Equations (6), (23), (24), (25), and (27) lead to the coefficients of the second 

fundamental form of the tube surface with the unit vector field 𝑼1  in 

𝔼4 obtained as, 

 

𝐿1 =
𝜂𝑠𝑖𝑛𝑣(𝑟𝜏 − 𝜅) + 𝜅 + 𝑟𝜏𝑐𝑜𝑠2𝑣(𝜂2 − 𝜅2) + 𝑟2𝜅𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2) + 𝑟𝜂2(𝑟𝜅 − 𝜏)

(1 + 𝜅2(𝑟2 + 𝑐𝑜𝑠2𝑣) + 𝜂2𝑠𝑖𝑛2𝑣 − 2𝜂𝑠𝑖𝑛𝑣)1/2

𝑀1 =
𝑟𝜅(𝑠𝑖𝑛𝑣 − 𝜂)

(1 + 𝜅2(𝑟2 + 𝑐𝑜𝑠2𝑣) + 𝜂2𝑠𝑖𝑛2𝑣 − 2𝜂𝑠𝑖𝑛𝑣)1/2

𝑁1 =
−𝑟2𝜅

(1 + 𝜅2(𝑟2 + 𝑐𝑜𝑠2𝑣) + 𝜂2𝑠𝑖𝑛2𝑣 − 2𝜂𝑠𝑖𝑛𝑣)1/2
.

 (30) 

 

Substituting equations (29) and (30) into equation (7) implies that Gaussian 

and mean curvatures with respect to 𝑼1 following as 

 

𝐾1 =
𝑟2𝜅[𝜂𝑠𝑖𝑛𝑣(𝜅 + 𝑟𝜏) + 𝑐𝑜𝑠2𝑣(𝑟2𝜅3 − 𝑟𝜅2𝜏 − 𝑟2𝜏𝜂2 + 𝜅) + 𝜂2(𝑟2𝜅 − 𝜅 − 𝑟𝜏)]

[𝑟2 + 𝑟4(𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣) − 𝑟2𝑠𝑖𝑛2𝑣][1 + 𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2) + 𝑟2𝜅2 + 𝜂2 − 2𝜂𝑠𝑖𝑛𝑣]
  

and 

𝐻1 =
−𝑟2[𝜂𝑠𝑖𝑛𝑣(𝜅 + 𝑟𝜏) + 𝑐𝑜𝑠2𝑣(2𝑟2𝜅3 − 𝑟𝜅2𝜏 − 2𝑟2𝜅𝜂2 + 𝑟𝜏𝜂2 + 2𝜅) + 𝑟𝜂2(2𝑟𝜅 − 𝜏)]

[𝑟2 + 𝑟4(𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣) − 𝑟2𝑠𝑖𝑛2𝑣][1 + 𝜂2𝑠𝑖𝑛2𝑣 + 𝜅2(𝑐𝑜𝑠2𝑣 + 𝑟2)]
  

 

equations (6), (23), (24), (3), and (28) lead to the coefficients of the second 

fundamental form of the tube surface with the unit vector field 𝑼2  in 

𝔼4 obtained as, 

 

𝐿2 =
𝜅𝜂𝑠𝑖𝑛𝑣 + 𝑟𝜏𝜂2 + 𝑟𝜏𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2)

√𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣

𝑀2 =
−𝑟𝜅𝜂

√𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣

𝑁2 = 0

 (31) 
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Substituting equations (29) and (31) into equation (7) implies that Gaussian 

and mean curvatures with respect to 𝑼2 following as 

 

𝐾2 =
−𝜅2𝜂2

[𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣][𝑟2𝜂2𝑠𝑖𝑛2𝑣 + 𝑟2𝜅2𝑐𝑜𝑠2𝑣 + 𝑐𝑜𝑠2𝑣]
  

and 

𝐻2 =
[−𝜅𝜂𝑠𝑖𝑛𝑣 + 𝑟𝜏𝑐𝑜𝑠2𝑣(𝜅2 − 𝜂2) + 𝑟𝜏𝜂2]

[𝑟2𝜂2𝑠𝑖𝑛2𝑣 + 𝑟2𝜅2𝑐𝑜𝑠2𝑣 + 𝑐𝑜𝑠2𝑣]√𝜅2𝑐𝑜𝑠2𝑣 + 𝜂2𝑠𝑖𝑛2𝑣
.  

 

Corollary If the Gaussian and mean curvatures corresponding to the unit 

normal vector fields obtained for the Frenet vectors 𝑻 and 𝑩2  are similarly 

calculated using the shape operators corresponding to the unit normal vector 

fields, the same result is obtained. 

 

Example 1 Let 𝛼(𝑠) be a centre curve with Frenet frame of tube surface in 

𝔼4 such as 

 

𝛼(𝑡) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
, −2 + √3𝑠𝑖𝑛

𝑠

√7
, 5 + 𝑐𝑜𝑠

2𝑠

√7
, 𝑠𝑖𝑛

2𝑠

√7
) (32) 

 

From ||𝛼(𝑠)|| = 1, it is easy to see that Frenet vectors are given as 

 

𝑻 = (−
√3

√7
𝑠𝑖𝑛

𝑠

√7
,
√3

√7
𝑐𝑜𝑠

𝑠

√7
, −

2

√7
𝑠𝑖𝑛

2𝑠

√7
,

2

√7
𝑐𝑜𝑠

2𝑠

√7
)

𝑵 = (−
√3

√19
𝑐𝑜𝑠

𝑠

√7
, −

√3

√19
𝑠𝑖𝑛

𝑠

√7
, −

4

√19
𝑐𝑜𝑠

2𝑠

√7
, −

4

√19
𝑠𝑖𝑛

2𝑠

√7
)

𝑩1 = (
2

√7
𝑠𝑖𝑛

𝑠

√7
, −

2

√7
𝑐𝑜𝑠

𝑠

√7
, −

√3

√7
𝑠𝑖𝑛

2𝑠

√7
,
√3

√7
𝑐𝑜𝑠

2𝑠

√7
)

𝑩2 = (
4√3

√57
𝑐𝑜𝑠

𝑠

√7
,
4√3

√57
𝑠𝑖𝑛

𝑠

√7
, −

3

√57
𝑐𝑜𝑠

2𝑠

√7
, −

3

√57
𝑠𝑖𝑛

2𝑠

√7
)

 (33) 

 

and from equation (3), Frenet curvatures are given as 

 

𝜅 =
19

7√19
,   𝜏 = −

6√3

7√19
 𝑎𝑛𝑑 𝜂 =

2

√19
.  

 

Substituting equations (32) and (33) into equation (5), the tube surface formed 

by the Frenet vectors 𝑻 and 𝑩1 is parametrized as  
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𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
+ 𝑟 (−

√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

2

√7
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣) ,

−2 + √3𝑠𝑖𝑛
𝑠

√7
+ 𝑟 (

√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 −

2

√7
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣) ,

5 + 𝑐𝑜𝑠
2𝑠

√7
+ 𝑟 (−

2

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

√3

√7
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣) ,

𝑠𝑖𝑛
2𝑠

√7
+ 𝑟 (

2

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 +

√3

√7
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣)) .

  

 

Hence for 𝑟 = 7, it is easily say that 

𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
+ −

7√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

14

√7
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣 ,

−2 + √3𝑠𝑖𝑛
𝑠

√7
+

7√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 −

14

√7
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣,

5 + 𝑐𝑜𝑠
2𝑠

√7
−

14

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

7√3

√7
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣,

𝑠𝑖𝑛
2𝑠

√7
+

14

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 +

7√3

√7
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣) .

 (34) 

 

Then for 𝑟 = 7, the unit normal vector fields in equation (35) of tube surface 

are given as 

 

𝑼1 =
1

√16 + 3𝑐𝑜𝑠2𝑣 + 6√3𝑠𝑖𝑛2𝑣
(0, −

14

√19
𝑠𝑖𝑛𝑣, 0,

19𝑐𝑜𝑠𝑣 + 6√3𝑠𝑖𝑛𝑣

√19
)

𝑼2 =
√4 + 𝑐𝑜𝑠2𝑣 + 3√3𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣

√16 + 3𝑐𝑜𝑠2𝑣 + 6√3𝑠𝑖𝑛2𝑣
(
𝑐𝑜𝑠𝑣

2
,
−𝑐𝑜𝑠𝑣√19(19𝑐𝑜𝑠𝑣 + 6√3𝑠𝑖𝑛𝑣)

38(16 + 3𝑐𝑜𝑠2𝑣 + 6√3𝑠𝑖𝑛2𝑣)
,
𝑠𝑖𝑛𝑣

2
,

−7𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣

(16 + 3𝑐𝑜𝑠2𝑣 + 6√3𝑠𝑖𝑛2𝑣)√19
)

 (35) 

 

Gaussian and mean curvatures in equations (36) and (37) of tube surface are 

given as 

 

𝐾1 =
−1

48√3𝑠𝑖𝑛2𝑣 + 64 + 𝑐𝑜𝑠2𝑣(21√3𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 − 105𝑐𝑜𝑠2𝑣 + 136)
 

𝐻1 =
𝑠𝑖𝑛𝑣

2(4 + 𝑐𝑜𝑠2𝑣 + 3√3𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣)√4√3𝑠𝑖𝑛2𝑣 + 16 + 3𝑐𝑜𝑠2𝑣

 (36) 

and 

𝐾2 =
𝑐𝑜𝑠2𝑣(2142𝑐𝑜𝑠4𝑣 + 2394√3𝑐𝑜𝑠3𝑣𝑠𝑖𝑛𝑣 + 8076𝑐𝑜𝑠2𝑣 − 4425√3𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 − 11726) − 2048 − 2328√3𝑠𝑖𝑛2𝑣

392(−256 + 𝑐𝑜𝑠2𝑣(294𝑐𝑜𝑠4𝑣 + 294√3𝑐𝑜𝑠3𝑣𝑠𝑖𝑛𝑣 + 959𝑐𝑜𝑠2𝑣 − 294√3𝑠𝑖𝑛2𝑣 − 1472) + 288√3𝑠𝑖𝑛2𝑣)

𝐻2 = −
264 + 3√3𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣(129 + 28𝑐𝑜𝑠2𝑣) + 4𝑐𝑜𝑠2𝑣(134 − 105𝑐𝑜𝑠2𝑣)

[64 + 𝑐𝑜𝑠2𝑣(136 − 105𝑐𝑜𝑠2𝑣) + √3𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣(96 + 21𝑐𝑜𝑠2𝑣)]√3√3𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 + 4 + 𝑐𝑜𝑠2𝑣

√4√3𝑠𝑖𝑛2𝑣 + 16 + 3𝑐𝑜𝑠2𝑣

 (37) 

 

respectively. Finally for 𝑟 = 7,  a tube surface shown in Figure 1  is 

parametrized as 
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𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
+ −

7√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

14

√7
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣 ,

−2 + √3𝑠𝑖𝑛
𝑠

√7
+

7√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 −

14

√7
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣,

5 + 𝑐𝑜𝑠
2𝑠

√7
−

14

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

7√3

√7
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣)

 

 

in projection space, 𝑥𝑦𝑧. Finally for 𝑟 = 7, a tube surface shown in Figure 1 is 

parametrized as 

 

𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
+ −

7√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

14

√7
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣 ,

−2 + √3𝑠𝑖𝑛
𝑠

√7
+

7√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 −

14

√7
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣,

𝑠𝑖𝑛
2𝑠

√7
+

14

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 +

7√3

√7
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣)

 

 

in projection space, 𝑥𝑦𝑡. Finally for 𝑟 = 7, a tube surface shown in Figure 1 is 

parametrized as 

 

𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
+ −

7√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

14

√7
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣 ,

5 + 𝑐𝑜𝑠
2𝑠

√7
−

14

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

7√3

√7
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣,

𝑠𝑖𝑛
2𝑠

√7
+

14

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 +

7√3

√7
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣)

 

 

in projection space, 𝑥𝑧𝑡. Finally for 𝑟 = 7, a tube surface shown in Figure 1 is 

parametrized as 

 

𝜓(𝑠, 𝑣) = (−2 + √3𝑠𝑖𝑛
𝑠

√7
+

7√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 −

14

√7
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣 ,

5 + 𝑐𝑜𝑠
2𝑠

√7
−

14

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

7√3

√7
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣,

𝑠𝑖𝑛
2𝑠

√7
+

14

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 +

7√3

√7
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣)

 

 

in projection space, 𝑦𝑧𝑡. 
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Figure 1 Tube surfaces in 𝑥𝑦𝑧, 𝑥𝑦𝑡, 𝑥𝑧𝑡 and 𝑦𝑧𝑡 projection spaces. 

 

The tube surface formed by the Frenet vectors 𝑻  and 𝑩2 in 𝔼4  is 

parametrized as  

 

𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
+ 𝑟 (−

√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

4√3

√57
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣) ,

−2 + √3𝑠𝑖𝑛
𝑠

√7
+ 𝑟 (

√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 +

4√3

√57
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣) ,

5 + 𝑐𝑜𝑠
2𝑠

√7
+ 𝑟 (−

2

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

3

√57
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣) ,

𝑠𝑖𝑛
2𝑠

√7
+ 𝑟 (

2

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 −

3

√57
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣))

  

 

Hence for 𝑟 = 7, it is easily say that 

 

𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
−

7√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

28√3

√57
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣 ,

−2 + √3𝑠𝑖𝑛
𝑠

√7
+

7√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 +

28√3

√57
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣,

5 + 𝑐𝑜𝑠
2𝑠

√7
−

14

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

21

√57
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣,

𝑠𝑖𝑛
2𝑠

√7
+

14

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 −

21

√57
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣)

 (38) 

 

Then for 𝑟 = 7, the unit normal vector fields in equation (39) of tube surface 

are given as 

 

𝑼1 =
1

√18816 + 165𝑐𝑜𝑠2𝑣 − 196√19𝑠𝑖𝑛𝑣
(133𝑐𝑜𝑠𝑣,

7(−19 + 2√19𝑠𝑖𝑛𝑣)

√19
, 19𝑐𝑜𝑠𝑣, 133𝑠𝑖𝑛𝑣) (39) 

  

𝑼2 =
√49 + 46𝑐𝑜𝑠2𝑣√3724 + 3135𝑐𝑜𝑠2𝑣

Γ[18816 + 165𝑐𝑜𝑠2𝑣 − 196√19𝑠𝑖𝑛𝑣]
(

√19𝑐𝑜𝑠𝑣(98√19𝑠𝑖𝑛𝑣 − 165𝑐𝑜𝑠2𝑣 − 196)

2
,
2(98𝑠𝑖𝑛𝑣 + √19𝑐𝑜𝑠2𝑣)

√19
,

7√19𝑐𝑜𝑠𝑣 (190 − √19𝑠𝑖𝑛𝑣),
−√19𝑠𝑖𝑛𝑣(98√19𝑠𝑖𝑛𝑣 − 165𝑐𝑜𝑠2𝑣 − 196)

2
) .

 

 

respectively, where 
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 Γ = √15𝑐𝑜𝑠2𝑣(2089132 + 1815𝑐𝑜𝑠2𝑣) − 98√19(165𝑐𝑜𝑠𝑣𝑠𝑖𝑛2𝑣 − 392𝑠𝑖𝑛𝑣) + 3687936. 

 

Gaussian and mean curvatures in equations (40) and (41) of tube surface are 

given as 

 

𝐾1 = 
1

3724Δ
[√19𝑐𝑜𝑠2𝑣𝑠𝑖𝑛𝑣(156408√3 − 84966 + 689871) + 𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣(1038597 + 256956√3)

+𝑐𝑜𝑠4𝑣(9693441 + 312816√3 + 44688√57) − √19𝑐𝑜𝑠𝑣(500346 + 44688√3) − 406847

+𝑠𝑖𝑛𝑣√3(2013012𝑐𝑜𝑠3𝑣 + 70756) + 𝑐𝑜𝑠3𝑣(500346√19 − 24738√3) − 2665322𝑐𝑜𝑠2𝑣]

𝐻1 =
𝑐𝑜𝑠4𝑣(4332√3 − 7581) − 𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣(16758√3 + 11913) − 266√19𝑠𝑖𝑛𝑣 + 𝑐𝑜𝑠2𝑣𝑠𝑖𝑛𝑣(532√19 − 1083𝑐𝑜𝑠𝑣)

532(4 + 3√3𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 + 𝑐𝑜𝑠2𝑣)√18816 − 196√19𝑠𝑖𝑛𝑣 + 165𝑐𝑜𝑠2𝑣

+
√19𝑐𝑜𝑠𝑣(3724 + 168√3) − 𝑐𝑜𝑠2𝑣(6498√3 + 96026 + 30324√3) − √19𝑐𝑜𝑠3𝑣(3724 + 168√3) + 2427

532(4 + 3√3𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣 + 𝑐𝑜𝑠2𝑣)√18816 − 196√19𝑠𝑖𝑛𝑣 + 165𝑐𝑜𝑠2𝑣

 (40) 

and 

 

𝐾2 =
1

Θ
[2𝑐𝑜𝑠4𝑣(1131735√19 + 5943504√3√19 − 94125696√3 − 139632652𝑐𝑜𝑠2𝑣 − 4014243464)

−47045881 − √3𝑐𝑜𝑠2𝑣(11887008√19 + 249627168) + 𝑐𝑜𝑠2𝑣(8468249869 + 2688728√19)

+√3𝑐𝑜𝑠𝑣𝑠𝑖𝑛2𝑣(60060672√19 + 11887008) − 𝑐𝑜𝑠𝑣𝑠𝑖𝑛2𝑣(30224768√19 + 12771458)

+𝑐𝑜𝑠4𝑣𝑠𝑖𝑛𝑣(30331392√19 + 20013840√3 + 1053360√3√19) + √19𝑐𝑜𝑠7𝑣(14747040√3 − 6144600)

+√19𝑐𝑜𝑠3𝑣(700707840 − 51480576√3) + 𝑐𝑜𝑠5𝑣(36733536√3√19 − 694563240√19 + 63377160)

+𝑐𝑜𝑠6𝑣𝑠𝑖𝑛𝑣(12414600√3𝑐𝑜𝑠𝑣 − 72053520√19) + 𝑠𝑖𝑛2𝑣(14856594√3 + 576156√19)

−𝑐𝑜𝑠5𝑣𝑠𝑖𝑛𝑣(1098133120 + 554131150√3) + 𝑐𝑜𝑠𝑣(60657300𝑐𝑜𝑠7𝑣 − 71635396 + 8258236𝑐𝑜𝑠2𝑣)

+𝑐𝑜𝑠3𝑣𝑠𝑖𝑛𝑣(3328898496√3 − 37642192√19 − 1456158480)]

𝐻2 =
−7(294√3𝑠𝑖𝑛2𝑣 + 784 + 196𝑐𝑜𝑠2𝑣)−1√3135𝑐𝑜𝑠2𝑣 + 3724√49 − 46𝑐𝑜𝑠2𝑣

4√165𝑐𝑜𝑠2𝑣 + 196√196√19𝑠𝑖𝑛𝑣 − 18816−165𝑐𝑜𝑠2𝑣
[𝑐𝑜𝑠5𝑣(44688√3 + 7644) − 6859

−𝑐𝑜𝑠4𝑣𝑠𝑖𝑛𝑣(11172 + 6384√3) − 𝑐𝑜𝑠3𝑣(22344√3 + 14224 + 21448√19𝑠𝑖𝑛𝑣) + 𝑐𝑜𝑠4𝑣(13056√19 + 63840√3√19)

+𝑐𝑜𝑠2𝑣𝑠𝑖𝑛𝑣(9576√3 − 134064) + √57𝑐𝑜𝑠3𝑣𝑠𝑖𝑛𝑣(6684 + 3960𝑐𝑜𝑠2𝑣) + 990√19𝑐𝑜𝑠6𝑣 + 𝑐𝑜𝑠𝑣(6580 − 22344√3)

+𝑐𝑜𝑠2𝑣(13419 − 95760√3√19 + 14112√19) + 𝑠𝑖𝑛2𝑣(1176√19√3 + 2166√3 + 85036√19)]

 (41) 

 

respectively, where 

Δ = 𝑐𝑜𝑠𝑣𝑠𝑖𝑛𝑣(56448√3 − 196√19𝑐𝑜𝑠𝑣 + 495√3𝑐𝑜𝑠2𝑣𝑠) + 75264 − 784√19𝑠𝑖𝑛𝑣

+𝑐𝑜𝑠2𝑣(19476 + 165𝑐𝑜𝑠2𝑣) + 588√57𝑐𝑜𝑠𝑣(𝑐𝑜𝑠𝑣 − 1).
  

 

and 

 
Θ = √3𝑐𝑜𝑠3𝑣(2620863𝑠𝑖𝑛𝑣 + 1764√19) + √3𝑐𝑜𝑠𝑣(2765952𝑠𝑖𝑛𝑣 − 28812√19) + 𝑐𝑜𝑠4𝑣(903981 − 9016√19𝑠𝑖𝑛𝑣)

−38416√19𝑠𝑖𝑛𝑣 + 3687936 + √57𝑐𝑜𝑠5𝑣(27048 + 22770𝑠𝑖𝑛𝑣) + 7590𝑐𝑜𝑠6𝑣 + 𝑐𝑜𝑠2𝑣(4416468 − 45668√19𝑠𝑖𝑛𝑣).
  

Finally for 𝑟 = 7, a tube surface shown in Figure 2 is parametrized as 

𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
−

7√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

28√3

√57
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣 ,

−2 + √3𝑠𝑖𝑛
𝑠

√7
+

7√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 +

28√3

√57
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣,

5 + 𝑐𝑜𝑠
2𝑠

√7
−

14

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

21

√57
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣)

 

 

in projection space, 𝑥𝑦𝑧. Finally for 𝑟 = 7, a tube surface shown in Figure 2 is 

parametrized as 
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𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
−

7√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

28√3

√57
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣 ,

−2 + √3𝑠𝑖𝑛
𝑠

√7
+

7√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 +

28√3

√57
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣,

𝑠𝑖𝑛
2𝑠

√7
+

14

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 −

21

√57
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣)

 

 

in projection space, 𝑥𝑦𝑡. Finally for 𝑟 = 7, a tube surface shown in Figure 2 is 

parametrized as 

 

𝜓(𝑠, 𝑣) = (√3𝑐𝑜𝑠
𝑠

√7
−

√5

2
−

7√3

√7
𝑠𝑖𝑛

𝑠

√7
𝑐𝑜𝑠𝑣 +

28√3

√57
𝑐𝑜𝑠

𝑠

√7
𝑠𝑖𝑛𝑣 ,

5 + 𝑐𝑜𝑠
2𝑠

√7
−

14

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

21

√57
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣,

𝑠𝑖𝑛
2𝑠

√7
+

14

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 −

21

√57
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣)

 

 

in projection space, 𝑥𝑧𝑡. Finally for 𝑟 = 7, a tube surface shown in Figure 2 is 

parametrized as 

𝜓(𝑠, 𝑣) = (−2 + √3𝑠𝑖𝑛
𝑠

√7
+

7√3

√7
𝑐𝑜𝑠

𝑠

√7
𝑐𝑜𝑠𝑣 +

28√3

√57
𝑠𝑖𝑛

𝑠

√7
𝑠𝑖𝑛𝑣 ,

5 + 𝑐𝑜𝑠
2𝑠

√7
−

14

√7
𝑠𝑖𝑛

2𝑠

√7
𝑐𝑜𝑠𝑣 −

21

√57
𝑐𝑜𝑠

2𝑠

√7
𝑠𝑖𝑛𝑣,

𝑠𝑖𝑛
2𝑠

√7
+

14

√7
𝑐𝑜𝑠

2𝑠

√7
𝑐𝑜𝑠𝑣 −

21

√57
𝑠𝑖𝑛

2𝑠

√7
𝑠𝑖𝑛𝑣)

 

in projection space, 𝑦𝑧𝑡. 

 

    

Figure 2 Tube surfaces in 𝑥𝑦𝑧, 𝑥𝑦𝑡, 𝑥𝑧𝑡 and 𝑦𝑧𝑡 projection spaces. 

 

The visualization of all tube surfaces are given with using Maple programme. 

 

CONCLUSION  

In this study, using the parametrization of the tube, we investigate the tube surface 

generated by Frenet vectors 𝑻, 𝑩1 and 𝑩2. The unit normal vector fields of this 

surface are obtained. In addition, Gaussian curvatures, mean curvatures, and first 

and second fundamental forms of this tube surface are calculated. An example is 

given and plotted in projection spaces. 
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ÖZET  

Bu çalışmada 4-boyutlu Öklid uzayında regüler bir eğri için Frenet çatısı ve 

quasi çatısı hakkında bilgi verilmiştir. 4-boyutlu Öklid uzayında bir uzay eğrisi, 

örneğin 𝑥𝑦-düzlemindeki  𝒌𝑥  ve 𝒌𝑦 izdüşüm vektörleri olmak üzere üzere 𝒕 

birim teğet, 𝒏𝒒 birim quasi normal, 𝒃𝑞1 birinci birim quasi binormal ve 𝒃𝑞2  ise 

ikinci birim quasi binormal kullanılarak quasi çatısı ve quasi eğrilikleri 

verilmiştir. Sonra 4-boyutlu Öklid uzayında bir uzay eğrisi için Frenet çatısı ve 

quasi çatısı arasındaki geçiş matrisleri hesaplanmıştır. Ayrıca bu çatıların 

eğrilikleri arasındaki bağıntılar da verilmiştir. Bulunan bu hesapların daha 

anlaşılabilir olması adına 4-boyutlu Öklid uzayında bir uzay eğrisi için quasi çatı 

ve quasi eğriliklerinin elde edildiği bir örnek yapılmıştır. 

 

Anahtar Kelimeler: Quasi çatı, Frenet çatısı, quasi eğrilikleri 
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ABSTRACT  

In this paper we give information about the Frenet frame and quasi frame for 

a regular curve in 4-dimensional Euclidean space. For a space curve in 4-

dimensional Euclidean space, e.g. 𝒌𝑥 and 𝒌𝑦 are projection vectors in the 𝑥𝑦 -

plane, 𝒕 is the unit tangent, 𝒏𝒒 is the unit quasi normal, 𝒃𝑞1 is the first unit quasi 

binormal and 𝒃𝑞2 is the second unit quasi binormal, the quasi frame and quasi 

curvatures are given. Then, for a space curve in 4-dimensional Euclidean space, 

the transition matrices between the Frenet frame and the quasi frame are 

calculated. The relations between the curvatures of these frames are also given. 

In order to make these calculations more understandable, an example is given in 

which the quasi frame and quasi curvatures are obtained for a space curve in 4-

dimensional Euclidean space. 

 

Keywords: Quasi frame, Frenet frame, quasi curvatures 
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INTRODUCTION 

The study of curves with in Euclidean 3-space is a key area in differential 

geometry, with the Frenet frame being particularly significant in classical 

geometry. However, the Frenet frame has certain limitations in practical 

applications, such as its inability to be defined when curvature is zero. 

Additionally, a major drawback of the Frenet frame is the unwanted rotation 

around the tangent vector (Bloomenthal, 1990). It's well understood that for a 

differentiable curve in an open interval, a set of mutually orthogonal unit vectors 

can be constructed at every point, known as the Frenet frame or moving frame 

vectors. The changes in these vectors along the curve define the curvatures of the 

curve. The collection of these vectors and curvatures is known as the Frenet 

apparatus of the curve. Recently, the theory of degenerate submanifolds has 

attracted attention, with extensions of classical differential geometry concepts 

being applied to Minkowski space (Turgut, 2009; Turgut and Yılmaz, 2008; 

Öztürk et al., 2014) and Galilean space (Magden and Yılmaz, 2014). The Bishop 

frame (Bishop, 1975), also called the parallel transport frame, provides an 

alternative framework for describing a moving frame, which remains well-

defined even when the curve's second derivative is zero. By parallel transporting 

each element of an orthonormal frame along the curve in Euclidean 4-space, we 

achieve this frame. When curvatures vanish at certain points, the Frenet frame 

cannot be used, and the Bishop frame takes its place (Bishop, 1975). For curves 

with unit speed α in 4-dimensional Euclidean space 𝐸4, where 𝛼′′ ≠ 0, Frenet 

curvature functions 𝑘1 , 𝑘2 and 𝑘3 are provided by Alessio (Alessio, 2009). This 

concept was later extended to 4-dimensional space with the introduction of a 

parallel transport frame (Çelik et al., 2014). In four-dimensional Euclidean space, 

this parallel transport frame is known as the Bishop frame, and it has been 

discussed in various studies (Ateş et al., 2019; Körpınar and Turhan, 2013; 

Özdemir et al., 2015; Hanson and Ma, 1995). Klok (1987) introduced sweep 

surfaces using rotation-minimizing frames, and a reliable computation of the 

rotation-minimizing frame for such surfaces was presented by Wang et al. (2008). 

Coquillart's work (Coquillart, 1987) inspired Mustafa to develop a new adapted 

frame for space curves, termed the quasi-frame (O’Neil, 1983). Çelik et al. (2014) 

conducted further investigations into the parallel transport frame within four 

dimensional space. They introduced the quasi frame as an alternative to the Frenet 

frame, which offers computational ease without sacrificing precision. This quasi 

frame can be viewed as an extension of the parallel transport frame. The concept 

of the quasi frame is based on a constant projection vector and the Euclidean 

angle between the principal normal and the quasi-normal vector field (Dede et 

al., 2015). When the second derivative vanishes, the frame rotates by a Euclidean 
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angle, with the quasi-normal being the unit vector orthogonal to both the tangent and 

projection vectors.  Several studies have been carried out in 4-dimensional space 

using this frame (Gezer and Ekici, 2023; Ekici Coşkun and Akça, 2023; Yağbasan 

et. al., 2023). This paper is structured as follows: We provide some basic definitions 

of Euclidean 4-space (𝐸4) and the quasi-frame in 4-space. We then introduce both 

the Frenet and quasi-frames for curves in 4-dimensional Euclidean space. 

Additionally, we derive the transition matrices between the Frenet and quasi-frames 

for a space curve in 4-dimensional space and establish the relationships between the 

curvatures of the two frames in Euclidean 4-space (𝐸4). 

 

PRELIMINARIES 

Let 𝛼(𝑠) = 𝛼: 𝐼 ⊂ ℝ → 𝐸4 be any space curve in Euclidean 4-space. Let            

𝐮 = (𝑢1, 𝑢2, 𝑢3, 𝑢4), 𝐯 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) and 𝐰 = (𝑤1, 𝑤2, 𝑤3, 𝑤4) be three 

vectors in 𝐸4, with the standard inner product as < 𝐮, 𝐯 >= 𝑢1𝑣1 + 𝑢2𝑣2 +

𝑢3𝑣3 + 𝑢4𝑣4. The norm of vector of 𝐸4 is given by ‖𝐮‖ = √𝑔(𝐮, 𝐮). The curve 

𝛼 is said to be parametrized by arc length s if 𝑔(𝛼′, 𝛼′) = 1. The vector product 

of 𝐮, 𝐯, 𝐰 is given by the determinant as follows 

 

𝐮 × 𝐯 × 𝐰 = [

𝑒1 𝑒2 𝑒3 𝑒4

𝑢1 𝑢2 𝑢3 𝑢4

𝑣1 𝑣2 𝑣3 𝑣4

𝑤1 𝑤2 𝑤3 𝑤4

], 

 

where 𝒆1 ∧ 𝒆2 ∧ 𝒆3 = 𝒆4, 𝒆2 ∧ 𝒆3 ∧ 𝒆4 = 𝒆1, 𝒆3 ∧ 𝒆4 ∧ 𝒆1 = 𝒆2 and 𝒆4 ∧ 𝒆1 ∧

𝒆2 = −𝒆3 (Allesio, 2009; Elsayied et al., 2021). 

 

Let u, v and w vectors in 𝐸4.  If these vectors are linearly independent, then 

the vector  𝐮 ∧ 𝐯 ∧ 𝐰 ∊  𝐸4 is orthogonal to u, v, and w, and swapping any two 

vectors reverses the sign. If the vectors are linearly dependent, the cross product 

results in the zero vector. In four dimensions, 𝐮 ∧ 𝐯 is undefined, as there is no 

determinant calculation of the 3 𝗑 4 (Alessio, 2009). 

The Frenet vectors for the curve with unit speed 𝛼: 𝐼 → 𝐸4 in Euclidean 4-

space 𝐸4 with       𝛼′′ ≠ 0 are given by  

 

𝒕(𝒔) = 𝛼′(𝑠) 𝒏(𝑠) =
 𝛼′′(𝑠)

|| 𝛼′′(𝑠)||

𝒃2(𝑠) =
𝛼′(𝑠) ∧ 𝛼′′(𝑠) ∧ 𝛼′′′(𝑠)

||𝛼′(𝑠) ∧ 𝛼′′(𝑠) ∧ 𝛼′′′(𝑠)||
𝒃1(𝑠) = 𝒃2(𝑠) ∧ 𝒕(𝒔) ∧ 𝒏(𝑠)

  (1) 

(Alessio, 2009).       
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Given an 𝛼(𝑡) = 𝛼: 𝐼⸦ℝ → 𝐸4 curve with arc parameter in 4-dimensional 

space. Let 𝒕(𝒔) = 𝛼′(𝑠), representing the unit tangent vector of α\alphaα at the 

point s. The first Serret-Frenet curvature of 𝛼 is defined as 𝑘1(s) = ‖𝛼′′‖. Then 

we have the Serret-Frenet formulae (Gluck, 1966): 

 

𝒕′(𝑠) = 𝑘1(𝑠)𝒏(𝑠)

𝒏′(𝑠) = −𝑘1(𝑠)𝒕(𝑠) + 𝑘2(𝑠)𝒃1(𝑠)

𝒃1
′ (𝑠) = −𝑘2(𝑠)𝒏(𝑠) + 𝑘3(𝑠)𝒃2(𝑠)

𝒃2
′ (𝑠) = −𝑘3(𝑠)𝒃1(𝑠)

   (2) 

 

Here Frenet curvatures 𝜅 = 𝑘1, 𝜏 = 𝑘2 and ղ = 𝑘3 are the first, second and 

third curvature functions of the α curve, respectively (Öztürt et al., 2017). 

The transformation matrix should be chosen to keep the tangent vector t 

unchanged. Then, we consider three possible planes of rotations for the Frenet 

vectors,  {𝒕, 𝒏, 𝒃1, 𝒃2}. The first rotation is in the space spanned by 𝒃1 and 𝒃2 

with an angle ϕ. The second rotation in the space plane spanned by 𝒏 and 𝒃2 with 

an angle θ. The third rotation in the space plane spanned by 𝒏 and 𝒃1 with an 

angle ψ (Elsayied et. al. 2021). The transformation matrix 𝑀 is of the form  

 

𝑀 = [

1 0 0 0
0 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
0 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 −𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

]. 

 

The quasi frame is an alternative to the Frenet frame, and involves a fixed unit 

vector k. For a curve 𝛼(𝑡) in 𝐸3, the quasi-frame consist of three orthogonal 

vectors called the unit tangent t, the quasi-normal 𝒏𝑞 and the quasi-binormal 𝒃𝑞 

with a Euclidean angle θ between the principal normal and quasi-normal. The 

quasi frame { 𝒕, 𝒏𝑞 , 𝒃𝑞 , 𝒌 } is defined by  

 

𝒕 =
 𝛼′

||𝛼′||
, 𝒏𝑞 =

 𝒕 ∧  𝒌

|| 𝒕 ∧  𝒌||
,   𝒃𝑞 = 𝒕 ∧ 𝒏𝑞   (3) 

 

where k is the projection vector. The quasi frame becomes singular in all cases 

where t and k are parallel and in these cases we change the projection i.e. near a 

point where t=(0,0,1) we could choose k=(0,1,0) or (1,0,0) but not (0,0,1).  Let θ 

be the angle between the vectors 𝒏 and 𝒏𝑞 given as in Figure 3.3 in Euclidean 3-

space. The connection between the Frenet frame and the quasi-frame, as 

described by equation (3), is represented by  
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[

𝒕
𝒏𝑞

𝒃𝑞

] = [
1 0  0
0 𝑐𝑜𝑠θ  𝑠𝑖𝑛θ
0 −𝑠𝑖𝑛θ 𝑐𝑜𝑠θ

] [
𝒕
𝒏
𝒃
] 

 

(Dede et al., 2015). For the unit speed 𝛼(𝑠) curve, the angle θ between 𝒏 

normal and 𝒏𝑞 quasi-normal vectors is expressed in the form of a relationship 

between Frenet curvatures and quasi curvatures as  

 

𝑘𝑞1 = 𝑘1𝑐𝑜𝑠θ

𝑘𝑞2 = −𝑘1sinθ

𝑘𝑞3 = 𝑑θ + 𝑘2

 (4) 

and angle θ as 

𝑐𝑜𝑠θ =
det (𝛼′′, 𝛼′, 𝜅)

‖𝛼′ ∧ 𝑘‖‖𝛼′′‖
  

 

(Dede et al., 2015). Let 𝛼= 𝛼(𝑠) be a space curve, the quasi frame in 𝐸4 

consists of four orthonormal vectors {𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2}, where t is the unit tangent 

vector, 𝒏𝑞 is the quasi-normal vector field, 𝒃𝑞1 and 𝒃𝑞2 are the first and second 

quasi-binormals, respectively. The frame is given by  

 

𝒕 =
 𝛼′(𝑠)

||𝛼′(𝑠)||
𝒏𝑞 =

 𝒕 ∧ 𝒌𝑥 ∧ 𝒌𝑦

|| 𝒕 ∧  𝒌𝑥 ∧ 𝒌𝑦||

𝒃𝑞2 =
𝛼′(𝑠) ∧ 𝒏𝑞 ∧ 𝛼′′′(𝑠)

||𝛼′(𝑠) ∧ 𝒏𝑞 ∧ 𝛼′′′(𝑠)||
𝒃𝑞1 = 𝒃𝑞2 ∧ 𝒕 ∧ 𝒏𝑞

   (5) 

 

where 𝐤𝑥 and 𝐤𝑦 are the projection vectors. 

To simplify the calculations, we select 𝐤𝑥 = (1,0,0,0) and 𝐤𝑦 = (0,1,0,0). 

The expression becomes singular when ttt is contained within the plane defined 

by 𝐤𝑥 and 𝐤𝑦. In such instances, we can modify our projection vectors 

accordingly. Thus, we classified the quasi frame into six types; xy-plane, xz-

plane, xt-plane, yz-plane, yt-plane and zt-plane directional quasi frames denoted 

by  

{𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2, 𝒌𝑥, 𝒌𝑦}, {𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2, 𝒌𝑦, 𝒌𝑧}, {𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2, 𝒌𝑥, 𝒌𝑧},

{𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2, 𝒌𝑦, 𝒌𝑡}, {𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2, 𝒌𝑥, 𝒌𝑡}, {𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2, 𝒌𝑧, 𝒌𝑡}
 (6) 
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with the projection vectors 𝐤𝑡 = (0,0,0,1), 𝐤𝑧 = (0,0,1,1), 𝐤𝑦 = (0,1,0,0) and 

𝐤𝑥 = (1,0,0,0). Let  𝛼(𝑠) be a curve without unit speed that is parameterized by 

s (Gezer and Ekici, 2023).  By differentiating equation (5) with respect to 𝑠, we 

obtain the variation equations of the quasi-frame in the form 

 

[
 
 
 
 

𝒕′
𝒏𝑞

′

𝒃𝑞1
′

𝒃𝑞2
′

]
 
 
 
 

= ||𝛼′||

[
 
 
 
 

0 𝑘𝑞1  𝑘𝑞2 0

−𝑘𝑞1 0  𝑘𝑞3 0

−𝑘𝑞2 −𝑘𝑞3 0 𝑘𝑞4

0 0 −𝑘𝑞4 0 ]
 
 
 
 

[
 
 
 

𝒕
𝐧𝑞

𝐛𝑞1

𝐛𝑞2]
 
 
 

. (7) 

 

The q-curvatures (quasi-curvatures) are also 

 

𝑘𝑞1 =
 < 𝒕′, 𝒏𝑞 >

||𝛼′||
𝑘𝑞2 =

 < 𝒕′, 𝒃𝑞1 >

||𝛼′||

𝑘𝑞3 =
 < 𝒏𝑞

′, 𝒃𝑞1 >

||𝛼′||
𝑘𝑞4 =

 < 𝒃𝑞1
′, 𝒃𝑞2 >

||𝛼′||

   (8) 

In this here, when the fourth curvature 𝑘𝑞4 calculated with respect to the quasi 

frame, is taken to be zero, the derivative formulas of the quasi frame fort he space 

curve in 3-dimensional Euclidean space are obtained (Dede et al., 2015; Gezer 

and Ekici, 2023). 

 

RELATIONS BETWEEN QUASI FRAME AND FRENET FRAME IN 

EUCLIDEAN 4-SPACE  

In this section, we first have obtained the matrix forms in 4-dimensional 

Euclidean space in which we will express the relations that will make possible 

the transitions between the Frenet frame and the quasi frame. 

 

Theorem 1 In 4-dimensional Euclidean space, let  

𝑀 = [

1 0  0 0
0 𝑐𝑜𝑠𝜃cos𝜓  𝑐𝑜𝑠𝜃sin𝜓 𝑠𝑖𝑛𝜃
0 −𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜃sin𝜙
0 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 −𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃cos𝜙

] 

be the transformation matrix, and the quasi frame vectors are {𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2} and 

the Frenet frame vectors are {𝒕, 𝒏, 𝒃1, 𝒃2} the equality  

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

= 𝑀 [

𝒕
𝒏
𝒃1

𝒃2

] 

is satisfied. 
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Proof Let the tangent vector of the transformation matrix be chosen to remain 

unchanged. Consider three possible rotation planes where {𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2} are 

quasi frame vectors and {𝒕, 𝒏, 𝒃1, 𝒃2} are Frenet frame vectors. The first return is 

taken such that the angle between the vectors 𝒃1 and 𝒃𝑞1 in the space covered by 

the first binormal 𝒃1 and the second binormal 𝒃2 is 𝜙, as shown in Figure 1, then 

the inner product is < 𝒃1, 𝒃𝑞1 >= 𝑐𝑜𝑠 𝜙. 

 
Figure 1 The first rotation plane, the plane Span{𝒃1, 𝒃2} at angle 𝜙 

 

Here are  

𝒃𝑞1 = 𝑐𝑜𝑠𝜙𝒃1 + 𝑐𝑜𝑠 (
𝜋

2
− 𝜙)𝒃2 

and 

𝒃𝑞2 = 𝑐𝑜𝑠(
𝜋

2
+ 𝜙)𝒃1 + 𝑠𝑖𝑛 (

𝜋

2
− 𝜙)𝒃2 

and from here  

𝒃𝑞1 = 𝑐𝑜𝑠𝜙𝒃1 + 𝑠𝑖𝑛𝜙𝒃2 

is written with  

𝒃𝑞2 = −𝑠𝑖𝑛𝜙𝒃1 + 𝑐𝑜𝑠𝜙𝒃2 

In that case,  

                                  

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

= [

1 0  0 0
0 1 0 0
0 0 𝑐𝑜𝑠𝜙 sin𝜙
0 0 −𝑠𝑖𝑛𝜙 cos𝜙

] [

𝒕
𝒏
𝒃1

𝒃2

]                              (9) 

will be. If the angle between the normal vector 𝒏 and the second binormal vector 

𝒃2 in the space they encompass is taken to be 𝜃, as shown in Figure 2, then               

< 𝒏, 𝒏𝑞 >= 𝑐𝑜𝑠 𝜃. 
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Figure 2 The second rotation plane, angle 𝜃 in the Span{𝒏, 𝒃2} 

 

Since there will be  

𝒏𝑞 = 𝑐𝑜𝑠𝜃𝒏 + 𝑠𝑖𝑛 (
𝜋

2
− 𝜃)𝒃2 

and  

𝒃𝑞2 = 𝑐𝑜𝑠(
𝜋

2
+ 𝜃)𝒏 + 𝑠𝑖𝑛 (

𝜋

2
− 𝜃)𝒃2 

here, 

𝒏𝑞 = 𝑐𝑜𝑠𝜃𝒏 + 𝑠𝑖𝑛 𝜃𝒃2 

and 

𝒃𝑞2 = 𝑐𝑜𝑠𝜃𝒃2 − 𝑠𝑖𝑛 𝜃𝒏 

 

are written. Then it becomes 

 

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

= [

1 0  0 0
0 𝑐𝑜𝑠𝜃 0 sin𝜃
0 0 1 0
0 −𝑠𝑖𝑛𝜃 0 cos𝜃

] [

𝒕
𝒏
𝒃1

𝒃2

] (10) 

 

The third rotation is taken such that the angle between the vector 𝒏 and the 

vector 𝒏𝑞 in the space formed by the normal vector 𝐭 and the first binormal vector 

𝒃1is 𝜓, as shown in Figure 3 which means < 𝒏, 𝒏𝑞 >= 𝑐𝑜𝑠  𝜓. 

 
Figure 3 Third rotation plane, angle  𝜓 in the Span{𝒕, 𝒃1}plane 
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Since there are 

𝒏𝑞 = 𝑐𝑜𝑠𝜓𝒏 + 𝑐𝑜𝑠 (
𝜋

2
+ 𝜓)𝒃1 

and 

𝒃𝑞1 = 𝑐𝑜𝑠 (
𝜋

2
+ (

𝜋

2
+ 𝜓))𝒏 + 𝑐𝑜𝑠 (

𝜋

2
− (

𝜋

2
− 𝜓))𝒃1 

here  

𝒏𝑞 = 𝑐𝑜𝑠𝜓𝒏 + 𝑠𝑖𝑛𝜓𝒃1 

and 

𝒃𝑞1 = −𝑠𝑖𝑛𝜓𝒏 + 𝑐𝑜𝑠𝜓𝒃1 

 

are written then it becomes, 

 

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

= [

1 0  0 0
0 𝑐𝑜𝑠𝜓 sin𝜓 0
0 −sin𝜓 𝑐𝑜𝑠𝜓 0
0 0 0 1

] [

𝒕
𝒏
𝒃1

𝒃2

] (11) 

 

Accordingly, the transformation matrix 𝑀 is written as 

 

𝑀 = ([

1 0  0 0
0 1  0 0
0 0 𝑐𝑜𝑠𝜙 sin𝜙
0 0 −𝑠𝑖𝑛𝜙 cos𝜙

] [

1 0  0 0
0 𝑐𝑜𝑠𝜃  0 sin𝜃
0 0 1 0
0 −𝑠𝑖𝑛𝜃 0 cos𝜃

]) [

1 0  0 0
0 𝑐𝑜𝑠𝜓 sin𝜓 0
0 −sin𝜓 𝑐𝑜𝑠𝜓 0
0 0 0 1

] 

 

It is also found as  

 

𝑀 = [

1 0  0 0
0 𝑐𝑜𝑠𝜃cos𝜓  𝑐𝑜𝑠𝜃sin𝜓 𝑠𝑖𝑛𝜃
0 −𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜃sin𝜙
0 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 −𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃cos𝜙

] 

 

from here.  As a result, using 𝑀 as the transformation matrix, the relationship 

between the Frenet frame and the quasi frame is derived as  

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

= 𝑀 [

𝒕
𝒏
𝒃1

𝒃2

]. 
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Theorem 2 In 4-dimensional Euclidean space, let the inverse transformation 

matrix be  

 

 𝑀−1 = [

1 0  0 0
0 𝑐𝑜𝑠𝜃cos𝜓 −𝑠𝑖𝑛𝜃sin𝜙𝑐𝑜𝑠𝜓 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜃cos𝜙𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙
0 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜃cos𝜙𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓
0 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜃cos𝜙

] 

 

and the quasi frame vectors be {𝒕, 𝒏𝑞 , 𝒃𝑞1, 𝒃𝑞2} and the Frenet frame vectors be 

{𝒕, 𝒏, 𝒃1, 𝒃2} the equality  

[

𝒕
𝒏
𝒃1

𝒃2

] =  𝑀−1

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

 

 

is satisfied. 

Proof In the equalities (9), the expression 𝒃𝑞1 is expanded with 𝑐𝑜𝑠𝜙 and the 

expression 𝒃𝑞2 is expanded with (−𝑠𝑖𝑛𝜙). If these expressions are added side by 

side, we obtain the quality  

 

𝒃1 = 𝑐𝑜𝑠𝜙𝒃𝑞1 − 𝑠𝑖𝑛𝜙𝒃𝑞2 

 

Similarly, if the expression 𝒃𝑞1 is expanded with  𝑠𝑖𝑛𝜙 and the expression 

𝒃𝑞2 is expanded with (𝑐𝑜𝑠𝜙), and if these expressions are added side by side, we 

arrive at the equation  

𝒃2 = 𝑠𝑖𝑛𝜙𝒃𝑞1 + 𝑐𝑜𝑠𝜙𝒃𝑞2 

[

𝒕
𝒏
𝒃1

𝒃2

] = [

1 0  0 0
0 1 0 0
0 0 𝑐𝑜𝑠𝜙 sin𝜙
0 0 −𝑠𝑖𝑛𝜙 cos𝜙

]

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

 

 

is written from here. In the equation (10), the expression 𝒏𝑞 is expanded with 

𝑠𝑖𝑛𝜃 and the expression 𝐛𝑞2 is expanded with 𝑐𝑜𝑠𝜃, and if these expressions are 

added side by side, the equality  

 

𝒃2 = 𝑠𝑖𝑛𝜃𝒏𝑞 + 𝑐𝑜𝑠𝜃𝒃𝑞2 
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is reached. In a similar manner, if the 𝒏𝑞 expression is expanded with 𝑐𝑜𝑠𝜃 and 

the 𝐛𝑞2 expression is expanded with (-𝑠𝑖𝑛𝜃), and these expressions are added side 

by side, the equality  

 

𝒏 = 𝑐𝑜𝑠𝜃𝒏𝑞 − 𝑠𝑖𝑛 𝜃𝒃𝑞2 

 

is reached. 

[

𝒕
𝒏
𝒃1

𝒃2

] = [

1 0  0 0
0 𝑐𝑜𝑠𝜃  0 −sin𝜃
0 0 1 0
0 𝑠𝑖𝑛𝜃 0 cos𝜃

]

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

 

 

is written from here. In equations (11), the expression 𝒏𝑞 is expanded with 𝑐𝑜𝑠𝜓 

and the expression 𝒃𝑞1 is expanded with (−𝑠𝑖𝑛𝜓); if these expressions are 

summed side by side, the equality  

 

𝒏 = 𝑐𝑜𝑠𝜓𝒏𝑞 − 𝑠𝑖𝑛𝜓𝒃𝑞1 

 

is reached. Smilarly, if the expression 𝒏𝑞 is expanded with 𝑠𝑖𝑛𝜓 and the 

expression 𝒃𝑞1 is expanded with 𝑐𝑜𝑠𝜓, and if these expressions are added side 

by side, the equality  

 

𝒃𝑞1 = 𝑠𝑖𝑛𝜓𝒏𝑞 + 𝑐𝑜𝑠𝜓𝒃𝑞1 

 

is reached. 

[

𝒕
𝒏
𝒃1

𝒃2

] = [

1 0  0 0
0 𝑐𝑜𝑠𝜓 −sin𝜓 0
0 sin𝜓 𝑐𝑜𝑠𝜓 0
0 0 0 1

]

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

 

 

is written from here. Accordingly, the inverse transformation matrix is written as  

 

 𝑀−1 = [

1 0  0 0
0 𝑐𝑜𝑠𝜓 −sin𝜓 0
0 sin𝜓 𝑐𝑜𝑠𝜓 0
0 0 0 1

]([

1 0  0 0
0 𝑐𝑜𝑠𝜃  0 −sin𝜃
0 0 1 0
0 𝑠𝑖𝑛𝜃 0 cos𝜃

] [

1 0  0 0
0 1  0 0
0 0 𝑐𝑜𝑠𝜙 −sin𝜙
0 0 𝑠𝑖𝑛𝜙 cos𝜙

]) 

 

such that 𝑀 𝑀−1 = 𝐼. From here,  
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 𝑀−1 = [

1 0  0 0
0 𝑐𝑜𝑠𝜃cos𝜓 −𝑠𝑖𝑛𝜃sin𝜙𝑐𝑜𝑠𝜓 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜃cos𝜙𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙
0 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜃cos𝜙𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓
0 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜃cos𝜙

] 

 

is found. The relationship between the Frenet frame and the quasi-frame can then 

be expressed as 

 

[

𝒕
𝒏
𝒃1

𝒃2

] =  𝑀−1

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

 

 

with  𝑀−1 represents the inverse of the transformation matrix. 

 

Theorem 3 For the curve 𝛼(𝑠), ||𝛼′(𝑠)|| = 1, the angle 𝜃 is normal and quasi-

normal, the angle 𝜙 is first binormal and first quasi-binormal, and the angle 𝜓 is 

given as the angles between the second binormal and second quasi-binormal 

vectors, in the form of the relationships between the quasi-curvatures and Frenet 

curvatures belonging to the space curve 𝛼(𝑠) 

 

𝑘𝑞1 = 𝑘1𝑐𝑜𝑠𝜃cos𝜓

𝑘𝑞2 = 𝑘1(𝑠𝑖𝑛𝜃sin𝜙𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙)

𝑘𝑞3 = (𝑠𝑖𝑛𝜙𝑑𝜃) + (𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃𝑑𝜓) + 𝑘2(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙)

+𝑘3(𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜃cos𝜙𝑐𝑜𝑠𝜓)

𝑘𝑞4 = (𝑑𝜙) + (𝑠𝑖𝑛𝜃𝑑𝜓) + 𝑘2(𝑠𝑖𝑛𝜃) + 𝑘3(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓)

 

 

Proof First, to find the curvature 𝑘𝑞1, if the derivative of 𝒏𝑞 in expression (10) 

is taken it becomes  

𝒏𝑞 = (𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓)𝒏 + (𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛𝜓)𝒃1 + (𝑠𝑖𝑛 𝜃)𝒃2 

 

𝒏𝑞
′   = (−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓𝑑𝜃)𝒏 − (𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛𝜓𝑑𝜓)𝒏

+(𝑐𝑜𝑠 𝜃𝑐𝑜𝑠𝜓)𝒏′ + (𝑐𝑜𝑠 𝜃 𝑑𝜃)𝒃2 + (𝑠𝑖𝑛𝜃)𝒃2
′

−(𝑠𝑖𝑛 𝜃𝑠𝑖𝑛𝜓𝑑𝜃)𝒃1 + (𝑐𝑜𝑠 𝜃𝑐𝑜𝑠𝜓 𝑑𝜓)𝒃1

+(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓)𝒃1
′

 

 

and if the Frenet formulas given by equality (7) are substituted into the above 

expression, 
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𝒏𝑞
′   = (−𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓𝑑𝜃)𝒏 − (𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛𝜓𝑑𝜓)𝒏 − (𝑠𝑖𝑛𝜃)(𝑘3 𝒃1)

 +(𝑐𝑜𝑠 𝜃𝑐𝑜𝑠𝜓)(−𝑘1 𝒕 + 𝑘2 𝒃1) + (𝑐𝑜𝑠𝜃𝑑𝜃)𝒃2

  −(𝑠𝑖𝑛 𝜃𝑠𝑖𝑛𝜓𝑑𝜃)𝒃1 + (𝑐𝑜𝑠 𝜃𝑐𝑜𝑠𝜓 𝑑𝜓)𝒃1

+(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓)(−𝑘2𝒏 + 𝑘3𝒃2)

 

 

If this expression is multiplied by 𝒕, it becomes  

 

𝑘𝑞1 = −< 𝒕, 𝒏𝑞
′ >= 𝑘1 𝑐𝑜𝑠 𝜃𝑐𝑜𝑠𝜓. 

 

To find the 𝑘𝑞2 curvature now, if we take the derivative of 𝒃𝑞1 in expression 

(10), it is found as  

 

𝒃𝑞1
′   = (−𝑐𝑜𝑠𝜙𝑑𝜙𝑠𝑖𝑛𝜃)𝒏 + (𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓𝑑𝜓 𝑠𝑖𝑛 𝜃)𝒏

−(𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃𝑑𝜃) 𝒏 − (𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃) 𝒏′

−(𝑐𝑜𝑠𝜓𝑑𝜓𝑐𝑜𝑠𝜙) 𝒏 + (𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙𝑑𝜙)𝒏 − (𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙)𝒏′

−(𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙𝑑𝜓) 𝒃1 − (𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓𝑑𝜙)𝒃1 + (𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙)𝒃1
′

−(𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓𝑑𝜙) 𝒃1 − (𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃𝑑𝜃𝑠𝑖𝑛𝜓)𝒃1

−(𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓𝑑𝜓) 𝒃1 − (𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙)𝒃1
′

−(𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑑𝜃) 𝒃2 + (𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙𝑑𝜙)𝒃2 + (𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃) 𝒃2
′

 

 

since it is  

 

𝒃𝑞1   = (−𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙)𝒏

+(𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓)𝒃1 + (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)𝒃2
 

 

If the Frenet formulas given by (7) are substituted and the necessary 

simplifications are made, it becomes  

 

𝒃𝑞1
′   = (−𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 𝑠𝑖𝑛 𝜃𝑑𝜙)𝒏 + (𝑠𝑖𝑛𝜓 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛𝜙𝑑𝜓)𝒏

−(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓𝑑𝜃) 𝒏 + (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙) (𝑘1 𝒕 + 𝑘2 𝒃1)

+(𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓𝑑𝜓) 𝒏 + (𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙𝑑𝜙)𝒏 − (𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙𝑑𝜓)𝒏

−(𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙𝑑𝜓) 𝒃1 − (𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓𝑑𝜙)𝒃1

−(𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙)𝒃2 (𝑘2𝒏 + 𝑘3𝒃2) − (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓𝑑𝜙)𝒃1

−(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙𝑑𝜃) 𝒃1 − (𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓𝑑𝜓)𝒃1

+(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙𝑑𝜙) 𝒃2 − (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)(𝑘3𝒃1)
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If the above expression is multiplied by 𝒕 and the necessary adjustments are 

made  

 

𝑘𝑞2 =< 𝒕, 𝒃𝑞1
′ >= 𝑘1 (𝑠𝑖𝑛 𝜃𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜙 + 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙) 

 

is obtained. 

 

Now, to find the 𝑘𝑞3 curvature, if the 𝒏𝑞
′ and 𝒃𝑞1 vectors are multiplied 

scalar-wise and the necessary simplifications are made, it is calculated as  

 

< 𝒏𝑞
′, 𝒃𝑞1 >= (𝑠𝑖𝑛𝜙𝑑𝜃) + (𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙𝑑𝜓) + (𝑘2𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙)

+(𝑘3𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙) + (𝑘3𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙)
 

and 

𝑘𝑞3 = (𝑠𝑖𝑛𝜙𝑑𝜃) + (𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙𝑑𝜓)

+𝑘2(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙) + 𝑘3(𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙)
 

 

Finally, to find the 𝑘𝑞4 curvature, 𝒃𝑞1
′
 and 𝒃𝑞2 in expression (10) are 

multiplied by a scalar, and if necessary simplifications are made,  

 

< 𝒃𝑞1
′, 𝒃𝑞2 >= (𝑐𝑜𝑠2𝜙𝑑𝜙) + (𝑠𝑖𝑛𝜃𝑑𝜓) + (𝑘2𝑠𝑖𝑛𝜃) + (𝑠𝑖𝑛2𝜙𝑑𝜙)  

+ (𝑘3𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃) 

 

is obtained. Then it’ll be 

 

𝑘𝑞4  = 𝑑𝜙 + (𝑠𝑖𝑛𝜃𝑑𝜓) + (𝑘2𝑠𝑖𝑛𝜃) + (𝑘3𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃). 

 

Corollary In this theorem, if the angle 𝜙 in the space covered by the first 

quasi-binormal 𝒃𝑞1 and the second quasi-binormal 𝒃𝑞2 and the normal vector 𝒏, 

as well as the angle 𝜓 in the space covered by the first quasi-binormal 𝒃𝑞1, are 

taken as zero, then relations between quasi curvatures and Frenet curvatures in 3-

dimensional space given by (7) is found. 

 

Example 1  Let 𝛼(𝑠) represent a central curve with the Frenet frame of a 

tubular surface in 𝐸4, defined as 

 

𝛼(𝑠) =
√2

2
(cos 𝑠 , sin 𝑠 ,

1

2
cos 2𝑠 ,

1

2
sin 2𝑠) 
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Since ‖𝛼(𝑠)‖ = 1, it follows that the Frenet vectors are 

𝒕 =
√2

2
(− 𝑠𝑖𝑛 𝑠 , 𝑐𝑜𝑠 𝑠 , − 𝑠𝑖𝑛 2𝑠 , 𝑐𝑜𝑠 2𝑠)

𝒏 =
√5

5
(− 𝑐𝑜𝑠 𝑠 , −𝑠𝑖𝑛 𝑠 , − 2𝑐𝑜𝑠 2𝑠 , −2 𝑠𝑖𝑛 2𝑠)

𝒃2 =
√5

5
(2𝑐𝑜𝑠 𝑠 , 2𝑠𝑖𝑛 𝑠 , − 2𝑐𝑜𝑠2 𝑠 + 1 ,−𝑠𝑖𝑛2𝑠)

𝒃1 =
√2

2
(𝑠𝑖𝑛 𝑠 , −𝑐𝑜𝑠 𝑠 , −𝑠𝑖𝑛2𝑠, 2𝑐𝑜𝑠2 𝑠 − 1)

 

 

and from equation (2), Frenet curvatures are given as 

 

𝑘1(𝑠) =
√10

2
, 𝑘2(𝑠) =

−3√10

10
 and 𝑘3(𝑠) =

2√10

5
. 

 

If quasi frame vectors are calculated using 𝐤𝑥 = (1,0,0,0) and 𝐤𝑦 = (0,1,0,0)   

projection vectors, it becomes  

𝒕 =
√2

2
(− 𝑠𝑖𝑛 𝑠 , 𝑐𝑜𝑠 𝑠 , − 𝑠𝑖𝑛 2𝑠 , 𝑐𝑜𝑠 2𝑠)

𝒏𝑞 = (0,0, 𝑐𝑜𝑠2𝑠, 𝑠𝑖𝑛2𝑠)

𝒃𝑞2 = (− 𝑐𝑜𝑠 𝑠 , − 𝑠𝑖𝑛 𝑠 , 0, 0)

𝒃𝑞1 =
√2

2
(𝑠𝑖𝑛 𝑠 , −𝑐𝑜𝑠 𝑠 , −𝑠𝑖𝑛2𝑠, 2𝑐𝑜𝑠2 𝑠 − 1).

 

 

If the quasi-curvatures are calculated with the help of (8),  

 

𝑘𝑞1 = −√2, 𝑘𝑞2 = 0, 𝑘𝑞3 = √2 and 𝑘𝑞4 =
−√2

2
 

 

The curves in the projection spaces xyz and xyt and the normal and quasi-

normal plane vectors at the points taken on them are plotted in Figure 4, 

respectively. 
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Figure 4 Frenet vectors 𝒏 and 𝒃 (red), quasi vectors 𝒏𝑞 and 𝒃𝑞 (green) 

 

The curves in the projection spaces xzt and yzt and the normal and quasi-

normal plane vectors at the points taken on them are plotted in Figure 5, 

respectively. 

 

 
 

Figure 5 Frenet vectors 𝒏 and 𝒃 (red), quasi vectors 𝒏𝑞 and 𝒃𝑞 (green) 

 

Example 2 Let 𝛼(𝑠) represent a central curve with the Frenet frame of a 

tubular surface in 𝐸4, defined as 

 

𝛼(𝑠) = (sin
𝑠

√2
, cos  

𝑠

√2
,

1

√2
sin 𝑠 ,

1

√2
cos 𝑠) 
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Since ‖𝛼(𝑠)‖ = 1, it follows that the Frenet vectors are 

𝒕 =
1

√2
(𝑐𝑜𝑠

𝑠

√2
, − 𝑠𝑖𝑛

𝑠

√2
, 𝑐𝑜𝑠 𝑠 , − 𝑠𝑖𝑛 𝑠)

𝒏 =
−1

√3
(𝑠𝑖𝑛

𝑠

√2
, 𝑐𝑜𝑠

𝑠

√2
, √2 𝑠𝑖𝑛 𝑠 , √2 𝑐𝑜𝑠 𝑠)

𝒃2 =
−1

√3
(−√2 𝑠𝑖𝑛

𝑠

√2
,−√2 𝑐𝑜𝑠

𝑠

√2
, 𝑠𝑖𝑛 𝑠, 𝑐𝑜𝑠 𝑠)

𝒃1 = −
1

√2
(𝑐𝑜𝑠

𝑠

√2
,− 𝑠𝑖𝑛

𝑠

√2
,− 𝑐𝑜𝑠 𝑠 , 𝑠𝑖𝑛 𝑠)

 

 

and from equation (2), Frenet curvatures are given as 

 

𝑘1(𝑠) =
√3

2
, 𝑘2(𝑠) = −

√3

6
 and 𝑘3(𝑠) =

√6

3
 . (12) 

 

If quasi frame vectors are calculated using 𝐤𝑥 = (1,0,0,0) and 𝐤𝑦 = (0,1,0,0)   

projection vectors, it becomes  

 

𝒕 =
1

√2
(𝑐𝑜𝑠

𝑠

√2
, − 𝑠𝑖𝑛

𝑠

√2
, 𝑐𝑜𝑠 𝑠 , − 𝑠𝑖𝑛 𝑠)

𝒏𝒒 = (0,0, −𝑠𝑖𝑛 𝑠 , − 𝑐𝑜𝑠 𝑠)

𝒃𝑞2 = (𝑠𝑖𝑛
𝑠

√2
, 𝑐𝑜𝑠

𝑠

√2
, 0,0)

𝒃𝑞1 = −
1

√2
(𝑐𝑜𝑠

𝑠

√2
,− 𝑠𝑖𝑛

𝑠

√2
,− 𝑐𝑜𝑠 𝑠 , 𝑠𝑖𝑛 𝑠)

 (13) 

 

If the quasi-curvatures are calculated with the help of (8),  

 

𝑘𝑞1(𝑠) =
1

√2
, 𝑘𝑞2(𝑠) = 0, 𝑘𝑞3 = −

1

√2
 and 𝑘𝑞4 =

1

2
 

 

The curves in the projection spaces xyz and xyt and the normal and quasi-

normal plane vectors at the points taken on them are plotted in Figure 6, 

respectively. 
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Figure 6 Frenet vectors 𝒏 and 𝒃 (red), quasi vectors 𝒏𝑞 and 𝒃𝑞 (green) 

 

The curves in the projection spaces xzt and yzt and the normal and quasi-

normal plane vectors at the points taken on them are plotted in Figure 7, 

respectively. 

 

     
Figure 7 Frenet vectors 𝒏 and 𝒃 (red), quasi vectors 𝒏𝑞 and 𝒃𝑞 (green) 

 

If the angles 𝜓, 𝜙 𝑎𝑛𝑑 𝜃 in the matrix given in Theorem 1 are specially 

chosen such that  𝜓 = 0, 𝜙 = 2𝜋 and 𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠
√2

√3
 , then  

 

[
 
 
 

𝒕
𝒏𝑞

𝒃𝑞1

𝒃𝑞2]
 
 
 

=

[
 
 
 
 
1 0  0 0

0
√2

√3
 0

1

√3

0 0 1 0

0 −
1

√3
0

√2

√3]
 
 
 
 

[

𝒕
𝒏
𝒃1

𝒃2

]. 

 

is found with the help of the matrix 𝑀. If Frenet frame vectors are substituted in 

this equation, quasi frame vectors are obtained as  
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𝒕 =
1

√2
(𝑐𝑜𝑠

𝑠

√2
,− 𝑠𝑖𝑛

𝑠

√2
, 𝑐𝑜𝑠 𝑠 , − 𝑠𝑖𝑛 𝑠)

𝒏𝒒 = −
√2

3
(𝑠𝑖𝑛

𝑠

√2
, 𝑐𝑜𝑠

𝑠

√2
, √2 𝑠𝑖𝑛 𝑠 , √2 𝑐𝑜𝑠 𝑠)

−
1

3
(−√2 𝑠𝑖𝑛

𝑠

√2
,−√2 𝑐𝑜𝑠

𝑠

√2
, 𝑠𝑖𝑛 𝑠, 𝑐𝑜𝑠 𝑠)

= (0,0, −𝑠𝑖𝑛 𝑠, − 𝑐𝑜𝑠 𝑠)

𝒃𝑞2 =
1

3
(𝑠𝑖𝑛

𝑠

√2
, 𝑐𝑜𝑠

𝑠

√2
, √2 𝑠𝑖𝑛 𝑠 , √2 𝑐𝑜𝑠 𝑠)

−
√2

3
(−√2 𝑠𝑖𝑛

𝑠

√2
, −√2 𝑐𝑜𝑠

𝑠

√2
, 𝑠𝑖𝑛 𝑠, 𝑐𝑜𝑠 𝑠)

= (𝑠𝑖𝑛
𝑠

√2
, 𝑐𝑜𝑠

𝑠

√2
, 0,0)

𝒃𝑞1 = −
1

√2
(𝑐𝑜𝑠

𝑠

√2
,− 𝑠𝑖𝑛

𝑠

√2
,− 𝑐𝑜𝑠 𝑠 , 𝑠𝑖𝑛 𝑠)

 

 

respectively. They are the same as the vectors given above (13). In a similar way, 

by substituting the given angle values into the Frenet curvatures given by (12) in 

the equations in Theorem  3, the quasi-curvatures are obtained as 

 

𝑘𝑞1 = 𝑘1𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 = (
√3

2
)(

√2

√3
) =

1

√2
𝑘𝑞2 = 𝑘1(𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙) = 0

𝑘𝑞3 = (𝑠𝑖𝑛𝜙𝑑𝜃) + (𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃𝑑𝜓) + 𝑘2(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙)

+𝑘3(𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓)

       = (−
√3

6
)

√2

√3
+

√6

3
(−

1

√3
) = −

√2

6
−

√2

3
= −

1

√2
𝑘𝑞4 = (𝑑𝜙) + (𝑠𝑖𝑛𝜃𝑑𝜓) + 𝑘2(𝑠𝑖𝑛𝜃) + 𝑘3(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓)

      = (−
√3

6
) (

1

√3
) + (

√6

3
 ) (

√2

√3
) =

1

2
.

 

 

This value is the same as the above (19) quasi-curvature values. 

All the figures in this study were created by using Maple programme. 
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CONCLUSION 

In four-dimensional Euclidean space, we first defined the quasi frame and 

quasi curvatures with Frenet vectors. We emphasised the importance of the quasi 

frame in that it can be calculated easily and with the same accuracy even in the 

absence of the second derivative of the curve. We found the transition matrices 

between the quasi frame and the Frenet frame for a space curve in 4-dimensional 

space. We gave the relations between the curvatures of the two frames. We also 

took a curve for which we will calculate these two frame vectors and exemplified 

its images in projection spaces. 
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INTRODUCTION 

Overall, dynamic inequalities and their different forms are important in 

harmonic analysis and other application areas. The most well-known of these 

are the Hardy and Hilbert inequalities. These integral inequalities also play an 

important role in time scales combining continuous and discrete state forms. At 

the same time, these integral inequalities are the cornerstones of applied 

mathematics. Before starting our work, we think giving some information about 

these inequalities would be useful. The reader can refer to the references section 

at the end of this work for more detailed information. 

In [1], the theorems we give below are well-known classical statements 

about Hilbert's inequality. 

 

Theorem 1.1. Let 𝑝, 𝑞 > 1, 
1

𝑝
+

1

𝑞
≤ 1, and 0 < 𝑤 = 2 −

1

𝑝
−

1

𝑞
=

1

𝑝′
+

1

𝑞′
≤ 1, 

then 

∑ ∑
𝑓𝑗𝑔𝑖

(𝑗 + 𝑖)𝑤

∞

𝑖=1

∞

𝑗=1

≤ 𝐷 (∑ 𝑓𝑗
𝑝

∞

𝑗=1

)

1
𝑝

(∑ 𝑔𝑖
𝑞

∞

𝑖=1

)

1
𝑞

,                                                  (1) 

 

where 𝐷 = 𝐷(𝑝, 𝑞).  

 

Theorem 1.2. Let 𝑓 ∈ 𝐿𝑝(0, ∞), 𝑔 ∈ 𝐿𝑞(0, ∞), and let 𝑝, 𝑞, 𝑝′, 𝑞′, 𝑤 be as in 

Theorem 1.1, then 

 

∫ ∫
𝑓(𝑥)𝑔(𝑦)

(𝑥 + 𝑦)𝑤
𝑑𝑥

∞

0

𝑑𝑦

∞

0

≤ 𝐷 (∫ 𝑓𝑝(𝑥)𝑑𝑥

∞

0

)

1
𝑝

(∫ 𝑔𝑞(𝑦)𝑑𝑦

∞

0

)

1
𝑞

,         (2) 

 

where 𝐷 = 𝐷(𝑝, 𝑞).  

 

In [2], Zhao et al. introduced a new inequality that is compatible with the 

structure of Theorem 1.2. 

  

50



Theorem 1.3. Let 
1

 𝑝𝑖
+

1

 𝑞𝑖
= 1 with 𝑝𝑖 > 1, 𝜋𝑖 ≥ 1. Let differentiable 

function 𝑓𝑖(𝜃𝑖) on [0, 𝑘𝑖), where 𝑘𝑖 ∈ (0, ∞). Assume 𝑓𝑖(0) = 0 for (𝑖 =

1, … , 𝑛). Then 

 

 
 

 

where 𝐷 = (𝑛 − ∑
1

𝑝𝑖

𝑛
𝑖=1 )

∑
1

𝑝𝑖
−𝑛𝑛

𝑖=1
∏ 𝜋𝑖𝑘𝑖

1

𝑞𝑖𝑛
𝑖=1 . 

 

In [3], Zhao and Chung introduced the following inequality. 

 

Theorem 1.4. Let 
1

 𝑝𝑖
+

1

 𝑞𝑖
= 1 with 𝑝𝑖 > 1, 𝑝𝑖 are constants. Let 

𝑓𝑖(𝛿1𝑖 , … , 𝛿𝑛𝑖) be real-valued 𝑛 − 𝑡ℎ differential functions defined on [0, 𝑘1𝑖) ×

… × [0, 𝑘𝑛𝑖), where 𝛿𝑗𝑖 ∈ (0, ∞) and 0 ≤ 𝑘𝑗𝑖 ≤ 𝛿𝑗𝑖 , (𝑗, 𝑖 = 1, … , 𝑛). Assume that  

 

𝑓𝑖(𝑘1𝑖 , … , 𝑘𝑛𝑖) = ∫ … ∫
𝜕𝑛

𝜕𝑘1𝑖
… 𝜕𝑘𝑛𝑖

𝑓𝑖(𝛿1𝑖 , … , 𝛿𝑛𝑖)𝑑𝛿𝑛𝑖
… 𝑑𝛿1𝑖

𝑘𝑛𝑖

0

𝑘1𝑖

0

, 

then 

(3) 

 

Where 𝑀 = (𝑛 − ∑
1

𝑝𝑖

𝑛
𝑖=1 )

∑
1

𝑝𝑖
−𝑛𝑛

𝑖=1
∏ (𝜖1𝑖 … 𝜖𝑛𝑖)

1

𝑞𝑖𝑛
𝑖=1 . 

 

For more detailed information on inequalities, time scales, and fractional 

calculus, see monographs [4-27, 52-61]. 
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AUXILIARY STATEMENTS AND PRELIMINARIES 

Although the history of time scale calculation is not very long, it has 

positioned itself in the field of mathematics and other disciplines of science. It 

owes this position to the unification of continuous and discrete cases in 

mathematics. Due to this situation, scientists in almost every field have 

integrated this field into their field of study and have contributed many 

innovations to the literature. Analytical solutions of differential equations in 

applied mathematics and mathematical modeling in economics are just a few 

examples of these application areas. Those who want more general information 

can look at references [28, 42-51].  𝕋 is a time scale that arbitrary non-empty 

closed subset of real numbers (ℝ). In our study, we will take this situation of 

(0, ∞)𝕋 = (0, ∞) ∩ 𝕋 into consideration. 

Now let's briefly give the basic concepts about the diamond-alpha derivative. 

𝜎, 𝜌: 𝕋 → 𝕋 are defined by 𝜎(𝑡) = 𝑖𝑛𝑓{𝑠 ∈ 𝕋: 𝑠 > 𝑡}, 𝜌(𝑡) = 𝑠𝑢𝑝{𝑠 ∈

𝕋: 𝑠 > 𝑡} for 𝑡 ∈ 𝕋. 𝜎(𝑡) is the jump operator (forward), and 𝜌(𝑡) is the jump 

operator (backward), respectively. Let 𝜎(𝑡) > 𝑡, then 𝑡 is 𝑟𝑠 (right-scattered), 

and let 𝜎(𝑡) = 𝑡, then 𝑡 is called 𝑟𝑑 (right-dense). Let 𝜌(𝑡) < 𝑡, then 𝑡 is 𝑙𝑠 

(left-scattered), and let 𝜌(𝑡) = 𝑡, then 𝑡 is called 𝑙𝑑 (left-dense).  

Let 𝜇, 𝜗: 𝕋 → ℝ+ such that 𝜇(𝑡) = 𝜎(𝑡) − 𝑡, 𝜗(𝑡) = 𝑡 − 𝜌(𝑡). μ(t) and 

𝜗(𝑡) are called 𝑔𝑚 (graininess mappings). 

If the time scale 𝕋 has a 𝑙𝑠 (left-scattered) maximum m, then 𝕋𝑘 = 𝕋 − {𝑚}. 

Otherwise 𝕋𝑘 = 𝕋.  

𝕋k is defined as follows 

 

𝕋𝑘 = {
𝕋 ∖ (𝜌 𝑠𝑢𝑝 𝕋, 𝑠𝑢𝑝 𝕋],       𝑖𝑓     𝑠𝑢𝑝 𝕋 < ∞
                                   𝕋,        𝑖𝑓     𝑠𝑢𝑝 𝕋 = ∞,

 

and 

𝕋𝑘 = {
𝕋 ∖ [𝑖𝑛𝑓 𝕋 , 𝜎(𝑖𝑛𝑓 𝕋)],         |𝑖𝑛𝑓 𝕋| < ∞

                                      𝕋,           𝑖𝑛𝑓 𝕋 = −∞.
 

 

Assume that ℎ: 𝕋 → ℝ is a function. Let 𝑡 be right-dense.  

i) Let 𝜋 be delta differentiable at 𝑡 (𝑡 ∈ 𝕋𝑘(𝑡 ≠ 𝑚𝑖𝑛𝕋)), then 𝜋 is 

continuous at t.  

ii) Let 𝜋 be 𝑙𝑐 (left continuous) at 𝑡, and 𝑡 is 𝑟𝑠 (right-scattered), then 𝜋 is 

delta differentiable at 𝑡, 

 

𝜋∆(𝑡) =
𝜋𝜎(𝑡)−𝜋(𝑡)

𝜇(𝑡)
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iii) Let 𝜋 be delta differentiable at 𝑡 and 𝑙𝑖𝑚
𝑠→𝑡

𝜋(𝑡)−𝜋(𝑠)

𝑡−𝑠
, then 

iv)  

𝜋∆(𝑡) = 𝑙𝑖𝑚
𝑠→𝑡

𝜋(𝑡) − 𝜋(𝑠)

𝑡 − 𝑠
. 

 

v) Let 𝜋 be delta differentiable at 𝑡, then 𝜋𝜎(𝑡) = 𝜋(𝑡) + 𝜇(𝑡)𝜋∆(𝑡). 

Let  𝕋 = ℝ, then 𝜋∆(𝑡) = 𝜋′(𝑡), and Let 𝕋 = ℤ, then 𝜋∆(𝑡) reduces to ∆𝜋(𝑡). 

Let 𝐾: 𝕋 → ℝ is defined as a delta antiderivative of 𝜋: 𝕋 → ℝ, then 𝐾∆ = 𝜋(𝑡) 

holds for all 𝑡 ∈ 𝕋, and we define the delta integral of 𝜋 by 

 

∫ 𝜋(𝜏)∆𝜏

𝑡

𝑠

= 𝐾(𝑡) − 𝐾(𝑠), 

 

for all 𝑠, 𝑡 ∈ 𝕋. 

 

Suppose 𝜋: ℝ → ℝ is a continuous function and delta differentiable on 𝕋. If 

𝜑: ℝ → ℝ is continuously differentiable, then we have 

 

(𝜑 ∘ 𝜋)∆(𝑠) = 𝜑′(𝜋(𝑚))𝜋∆(𝑠),    𝑚 ∈ [𝑠, 𝜎(𝑠)]. 

 

Let's now give some definitions for the nabla integral. 

Let 𝜋: 𝕋𝑘 → ℝ is called nabla differentiable at 𝑡 ∈ 𝕋𝑘. If 𝜀 > 0, then the 

following inequality is provided 

 

|𝜋(𝜌(𝑡)) − 𝜋(𝑠) − 𝜋𝛻(𝑡)(𝜌(𝑡) − 𝑠)| ≤ 𝜀|𝜌(𝑡) − 𝑠|, 

 

for all 𝑠 ∈ 𝑉. 

 

Let 𝐾: 𝕋 → ℝ is called a nabla antiderivative of 𝜋: 𝕋 → ℝ, then we define  

 

∫ 𝜋(𝜏)𝛻𝜏

𝑡

𝑠

= 𝐾(𝑡) − 𝐾(𝑠), 

for all 𝑠, 𝑡 ∈ 𝕋. 
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In [50], Let 𝜗(𝑡) be diamond alpha differentiable on 𝕋 for all ∝, 𝑡 ∈ 𝕋, then 

we define 𝜗⋄∝(𝑡) by 

 

𝜗⋄∝(𝑡) =∝ 𝜗∆(𝑡) + (1−∝)𝜗𝛻(𝑡) 

 

for 0 ≤∝≤ 1. 

 

Theorem 2.1 [50] Let  𝜗, ℎ: 𝕋 → ℝ be diamond alpha differentiable for all ∝, 𝑡 ∈

𝕋 and 0 ≤∝≤ 1. 

 

(i) Let (𝜗 + ℎ): 𝕋 → ℝ be diamond alpha differentiable for all 𝑡 ∈ 𝕋, then 

 

(𝜗 + ℎ)⋄∝(𝑡) = 𝜗⋄∝(𝑡) + ℎ⋄∝(𝑡). 

 

(ii)  Let 𝑘𝜗: 𝕋 → ℝ be diamond alpha differentiable for all ∝, 𝑡 ∈ 𝕋, then  

 

(𝑘𝜗)⋄∝(𝑡) = 𝑘𝜗⋄∝(𝑡), 

 

where t,𝑘 ∈ ℝ. 

 

(iii) Let 𝜗, ℎ: 𝕋 → ℝ be diamond alpha differentiable for all ∝, 𝑡 ∈ 𝕋, then 

 

(𝜗ℎ)⋄∝(𝑡) = 𝜗⋄∝(𝑡)ℎ(𝑡)+∝ 𝜗𝜎(𝑡)ℎ∆(𝑡) + (1−∝)𝜗𝜌(𝑡)ℎ𝛻(𝑡). 

 

Definition 2.2 [50] If 𝜗: 𝕋 → ℝ is ⋄∝−integrable for all ∝, 𝑏, 𝑡 ∈ 𝕋, then 

 

          ∫ 𝜗(𝛿) ⋄∝ 𝛿

𝑡

𝑏

=∝ ∫ 𝜗(𝛿)∆𝛿

𝑡

𝑏

+ (1−∝) ∫ 𝜗(𝛿)𝛻𝛿

𝑡

𝑏

 

 

for 0 ≤∝≤ 1. 

 

Definition 2.3 [46, 52] Let 𝜗 ∈ 𝐶𝑟𝑑(𝕋, ℝ), 𝑡 ∈ 𝕋𝑘 and let 𝜗: 𝕋 → ℝ be 

diamond alpha integrable, then 

 

∫ 𝜗(𝜏) ⋄∝ 𝜏

𝜎(𝑡)

𝑡

= 𝜇(𝑡)𝜗(𝑡). 
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The partial integration formula on the time scale is given by 

∫ 𝑢(𝑠)𝑤⋄∝(𝑠) ⋄∝ 𝑠

𝑦

𝑥

= 𝑢(𝑠)𝑤(𝑠)I𝑥
𝑦

− ∫ 𝑢⋄∝(𝑠)𝑤𝜎(𝑠) ⋄∝ 𝑠

𝑦

𝑥

 

 

for 0 ≤∝≤ 1.  

 

Definition 2.4 [25, 51] (Conformable diamond-alpha derivative) Given 

𝜗: 𝕋 → ℝ and 𝛽 ∈ 𝕋, 𝜗 is (𝜆, 𝛽) −diamond alpha differentiable at 𝜂 > 𝛽, if it’s 

diamond alpha differentiable at 𝜂, and its (𝜆, 𝛽) −diamond alpha derivative is 

defined by 

 

       ⋄∝𝛽
𝜆 𝜗(𝜂) = Λ1−𝜆(𝜂, 𝛽)𝜗⋄∝(𝜂)               𝜂 > 𝛽,                        (4)  

 

Definition 2.5 [25, 51] (Conformable diamond-alpha integral) Suppose that 

𝛽, 𝜂1, 𝜂2 ∈ 𝕋, 𝜗 ∈ 𝐶(𝕋), 0 < 𝜆 ≤ 1, 𝛽 ≤ 𝜂1 ≤ 𝜂2, and the function 𝜗 is called 

(𝜆, 𝛽) −diamond alpha integrable on [𝜂1, 𝜂2] if 

 

      ⋄∝𝛽
𝜆 𝜗(𝜂) = ∫ 𝜗(𝜂) ⋄∝𝛽

𝜆 𝜂

𝜂2

𝜂1

= ∫ 𝜗(𝜂)Λ1−𝜆(𝜎1−𝜆( 𝜂), 𝛽) ⋄∝ 𝜂

𝜂2

𝜂1

,     (5) 

 

Lemma 2.6 [14] If 𝑓, 𝜀 ∈ 𝐶𝐶𝑟𝑑
1 ([𝜔, 𝑝]𝕋 × [𝜔, 𝑝]𝕋, ℝ) are diamond alpha 

integrable functions and 
1

𝑝
+

1

𝑞
= 1 with 𝑝 > 1 and let 𝜔, 𝑝 ∈ 𝕋 with 𝜔 < 𝑝, 

then 

 (5) 

 

In this study, we prove a new fractional inequality of Hilbert-type on time 

scales using the properties of Theorem 1.3 mentioned above. We also obtain 

discrete cases of Hilbert-type inequalities related to some special cases of our 

results. 
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Main Result 

Theorem 3.1 Let 𝜖0, 𝑘𝑖𝑗 , 𝛿𝑖𝑗 , 𝜖𝑖𝑗 ∈ 𝕋, (𝑖, 𝑗 = 1, … , 𝑛). Let 𝑝𝑖 , 𝑞𝑖 > 1 be 

constants and 
1

 𝑝𝑖
+

1

 𝑞𝑖
= 1 and let 𝑓𝑖(𝛿1𝑗 , … , 𝛿𝑛𝑗) be ⋄∝

𝜆,𝛽−differentiable 

functions and also defined on [𝜖0, 𝑘1𝑖)𝕋 × … × [𝜖0, 𝑘𝑛𝑖)𝕋, where 𝜖𝑗𝑖 ∈ (0, ∞) 

and 𝜖0 ≤ 𝑘𝑗𝑖 ≤ 𝜖𝑗𝑖 , (𝑗, 𝑖 = 1, … , 𝑛).  Assume that 

 

𝑓𝑖(𝑘1𝑖 , … , 𝑘𝑛𝑖)

= ∫ … ∫
𝜕𝑛

⋄∝
𝜆,𝛽 𝛿1𝑖 … ⋄∝

𝜆,𝛽 𝛿𝑛𝑖
𝑓𝑖(𝛿1𝑖 , … , 𝛿𝑛𝑖) ⋄∝

𝜆,𝛽 𝛿𝑛𝑖 … ⋄∝
𝜆,𝛽 𝛿1𝑖

𝑘𝑛𝑖

𝜖0

𝑘1𝑖

𝜖0

, 

 

then 

(6) 

 

Where 𝑀 = 𝑀(𝜖1𝑖 … 𝜖𝑛𝑖) (𝑛 − ∑
1

𝑝𝑖

𝑛
𝑖=1 )

∑
1

𝑝𝑖
−𝑛𝑛

𝑖=1
∏ ((𝜖1𝑖 − 𝜖0) … (𝜖𝑛𝑖 − 𝜖0))

1

𝑞𝑖𝑛
𝑖=1 . 

 

Proof. From Theorem 3.1, we obtain 

(7) 
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On the other hand, by using Hölder’s dynamic inequality and inequality 

 
 

we obtain 

(8) 

 

  

57



Divide (8) by (∑
(𝑘1𝑖−𝜖0)…(𝑘𝑛𝑖−𝜖0)

𝑞𝑖

𝑛
𝑖=1 )

∑
1

𝑞𝑖

𝑛
𝑖=1

, then using dynamic Hölder 

inequality and ℎ(𝑛) ≥ 𝑛, we have that 

 
 

Remarks 3.2   

i.  In Theorem 3.1, let 𝕋 = ℤ, ∝= 0, and 𝜆 = 1, then we see the results of 

Theorem 2.1 in [3]. 

ii.  In Theorem 3.1, let 𝕋 = ℝ, ∝= 0, and 𝜆 = 1, then we see the results of 

Theorem 2.2 in [3]. 
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Corollary 3.3 In Theorem 3.1, let ∝= 0, if we take 𝑓𝑖(𝜃𝑖) instead of 

𝑓𝑖(𝑘1𝑖 , … , 𝑘𝑛𝑖), then we see 𝑓𝑖(𝜖0) = 0, 

and then we obtain 

 

∫ ∫ …

𝑘2

𝜖0

∫
∏ |𝑓𝑖(𝜃𝑖)|𝑛

𝑖=1

(∑
(𝜃𝑖 − 𝜖0)

𝑞𝑖

𝑛
𝑖=1 )

∑
1
𝑞𝑖

𝑛
𝑖=1

⋄∝
𝜆,𝛽 𝜃𝑛 ⋄∝

𝜆,𝛽 𝜃𝑛−1 … ⋄∝
𝜆,𝛽 𝜃1

𝑘𝑛

𝜖0

𝑘1

𝜖0

 

         ≤ 𝑆 ∏ ( ∫ (ℎ(𝑘𝑖) − ℎ(𝜃𝑖))

𝑘𝑖

𝜖0

|𝑓𝑖
⋄∝

𝜆,𝛽
(𝜃𝑖)|

𝑝𝑖

⋄∝
𝜆,𝛽 𝛿𝑖 ⋄∝

𝜆,𝛽 𝜃𝑖)

1
𝑝𝑖𝑛

𝑖=1

,      (9) 

 

where 𝑆 = (𝑛 − ∑
1

𝑝𝑖

𝑛
𝑖=1 )

∑
1

𝑝𝑖

𝑛
𝑖=1 −𝑛

∏ (𝑘𝑖 − 𝜖0)
1

𝑞𝑖𝑛
𝑖=1 . 

 

Remarks 3.4 Let 𝑛 = 2, ∝= 0, in Corollary 3.3, if 𝑝1, 𝑝2 > 1 with 1 𝑝1⁄ +

1 𝑝2⁄ ≥ 1, and 0 < 𝜆 = 2 − 1 𝑝1⁄ − 1 𝑝2⁄ = 1 𝑞1⁄ + 1 𝑞2⁄ ≤ 1, inequality (9) 

reduces to inequality 

 

 

 

Conclusion 

Hardy and Hilbert inequalities in different structures have been presented by 

researchers before. In this study, we have constructed new structures of Hardy-

Hilbert inequalities in time scales for diamond alpha calculation. To be more 

precise, we have constructed a new form of Hardy-Hilbert inequality in time 

scales. The results we have obtained will be a source of motivation for our work 

in different fields. 
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INTRODUCTION 

In general, inequalities and their different forms have a considerable place in 

harmonic analysis and other application areas. One of these is the well-known 

Hilbert inequality in mathematics. These integral inequalities also play an 

important role in calculating time scales, which combine continuous and 

different forms of cases. At the same time, these integral inequalities are one of 

the main cornerstones of applied mathematics. Before starting our work, we 

think giving some information about Hilbert's inequality will be useful. If the 

reader wants, he can look at the references section at the end of this work for 

more detailed information. 

In [1], the theorems we give below are well-known classical statements 

about Hilbert's inequality. 

 

Theorem 1.1. Let 𝑝, 𝑞 > 1, 
1

𝑝
+

1

𝑞
≤ 1, and 0 < 𝑤 = 2 −

1

𝑝
−

1

𝑞
=

1

𝑝′
+

1

𝑞′
≤ 1, 

then 

  (1) 

 

 

where 𝐷 = 𝐷(𝑝, 𝑞).  

 

Theorem 1.2. Let 𝑓 ∈ 𝐿𝑝(0, ∞), 𝑔 ∈ 𝐿𝑞(0, ∞), and let 𝑝, 𝑞, 𝑝′, 𝑞′, 𝑤 be as in 

Theorem 1.1, then 

          (2) 

 

where 𝐷 = 𝐷(𝑝, 𝑞).  

 

In [2], Zhao et al. introduced a new inequality that is compatible with the 

structure of Theorem 1.2. 
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Theorem 1.3. Let 
1

 𝑝𝑖
+

1

 𝑞𝑖
= 1 with 𝑝𝑖 > 1, 𝜋𝑖 ≥ 1. Let differentiable 

function 𝑓𝑖(𝜃𝑖) on [0, 𝑘𝑖), where 𝑘𝑖 ∈ (0, ∞). Assume 𝑓𝑖(0) = 0 for (𝑖 =

1, … , 𝑛). Then 

 

 

where 𝐷 = (𝑛 − ∑
1

𝑝𝑖

𝑛
𝑖=1 )

∑
1

𝑝𝑖
−𝑛𝑛

𝑖=1
∏ 𝜋𝑖𝑘𝑖

1

𝑞𝑖𝑛
𝑖=1 . 

 

For more detailed information on Hilbert inequalities, see monographs [3-27, 

52-61]. 

 

PRELIMINARIES 

Although the history of time scale calculation is not very long, it has 

positioned itself not only in the field of mathematics but also in other disciplines 

of science. It owes this position to the unification of continuous and discrete 

cases in mathematics. Due to this situation, scientists in almost every field have 

integrated this field into their field of study and have contributed many 

innovations to the literature. Analytical solutions of differential equations in 

applied mathematics and mathematical modeling in economics are just a few 

examples of these application areas. Those who want to have more general 

information can look at references [28, 42, 43, 44, 45-51].  𝕋 is a time scale that 

arbitrary non-empty closed subset of real numbers (ℝ). In our study, we will 

take this situation of (0, ∞)𝕋 = (0, ∞) ∩ 𝕋 into consideration. 

Now let's briefly give the basic concepts about the diamond-alpha derivative. 

 

𝜎, 𝜌: 𝕋 → 𝕋 are defined by 𝜎(𝑡) = 𝑖𝑛𝑓{𝑠 ∈ 𝕋: 𝑠 > 𝑡}, 𝜌(𝑡) = 𝑠𝑢𝑝{𝑠 ∈

𝕋: 𝑠 > 𝑡} for 𝑡 ∈ 𝕋. 𝜎(𝑡) is the jump operator (forward), and 𝜌(𝑡) is the jump 

operator (backward), respectively. Let 𝜎(𝑡) > 𝑡, then 𝑡 is 𝑟𝑠 (right-scattered), 

and let 𝜎(𝑡) = 𝑡, then 𝑡 is called 𝑟𝑑 (right-dense). Let 𝜌(𝑡) < 𝑡, then 𝑡 is 𝑙𝑠 

(left-scattered), and let 𝜌(𝑡) = 𝑡, then 𝑡 is called 𝑙𝑑 (left-dense).  

 

Let 𝜇, 𝜗: 𝕋 → ℝ+ such that 𝜇(𝑡) = 𝜎(𝑡) − 𝑡, 𝜗(𝑡) = 𝑡 − 𝜌(𝑡). μ(t) and 

𝜗(𝑡) are called 𝑔𝑚 (graininess mappings). 
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If the time scale 𝕋 has a 𝑙𝑠 (left-scattered) maximum m, then 𝕋𝑘 = 𝕋 − {𝑚}. 

Otherwise 𝕋𝑘 = 𝕋.  

 

𝕋k is defined as follows 

 

𝕋𝑘 = {
𝕋 ∖ (𝜌 𝑠𝑢𝑝 𝕋, 𝑠𝑢𝑝 𝕋],       𝑖𝑓     𝑠𝑢𝑝 𝕋 < ∞
                                   𝕋,        𝑖𝑓     𝑠𝑢𝑝 𝕋 = ∞,

 

and 

𝕋𝑘 = {
𝕋 ∖ [𝑖𝑛𝑓 𝕋 , 𝜎(𝑖𝑛𝑓 𝕋)],         |𝑖𝑛𝑓 𝕋| < ∞

                                      𝕋,           𝑖𝑛𝑓 𝕋 = −∞.
 

 

Assume that ℎ: 𝕋 → ℝ is a function. Let 𝑡 be right-dense.  

 

i) Let 𝜋 be delta differentiable at 𝑡 (𝑡 ∈ 𝕋𝑘(𝑡 ≠ 𝑚𝑖𝑛𝕋)), then 𝜋 is 

continuous at t.  

ii) Let 𝜋 be 𝑙𝑐 (left continuous) at 𝑡, and 𝑡 is 𝑟𝑠 (right-scattered), then 𝜋 is 

delta differentiable at 𝑡, 

 

𝜋∆(𝑡) =
𝜋𝜎(𝑡) − 𝜋(𝑡)

𝜇(𝑡)
 

    

iii) Let 𝜋 be delta differentiable at 𝑡 and 𝑙𝑖𝑚
𝑠→𝑡

𝜋(𝑡)−𝜋(𝑠)

𝑡−𝑠
, then 

 

𝜋∆(𝑡) = 𝑙𝑖𝑚
𝑠→𝑡

𝜋(𝑡) − 𝜋(𝑠)

𝑡 − 𝑠
. 

 

iv) Let 𝜋 be delta differentiable at 𝑡, then 𝜋𝜎(𝑡) = 𝜋(𝑡) + 𝜇(𝑡)𝜋∆(𝑡). 

 

Let  𝕋 = ℝ, then 𝜋∆(𝑡) = 𝜋′(𝑡), and Let 𝕋 = ℤ, then 𝜋∆(𝑡) reduces to ∆𝜋(𝑡). 

 

Let 𝐾: 𝕋 → ℝ is defined as a delta antiderivative of 𝜋: 𝕋 → ℝ, then 𝐾∆ = 𝜋(𝑡) 

holds for all 𝑡 ∈ 𝕋, and we define the delta integral of 𝜋 by 

 

∫ 𝜋(𝜏)∆𝜏

𝑡

𝑠

= 𝐾(𝑡) − 𝐾(𝑠), 

 

for all 𝑠, 𝑡 ∈ 𝕋. 
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Suppose 𝜋: ℝ → ℝ is a continuous function and delta differentiable on 𝕋. If 

𝜑: ℝ → ℝ is continuously differentiable, then we have 

 

(𝜑 ∘ 𝜋)∆(𝑠) = 𝜑′(𝜋(𝑚))𝜋∆(𝑠),    𝑚 ∈ [𝑠, 𝜎(𝑠)]. 

 

Let's now give some definitions for the nabla integral. 

 

Let 𝜋: 𝕋𝑘 → ℝ is called nabla differentiable at 𝑡 ∈ 𝕋𝑘. If 𝜀 > 0, then the 

following inequality is provided 

 

|𝜋(𝜌(𝑡)) − 𝜋(𝑠) − 𝜋𝛻(𝑡)(𝜌(𝑡) − 𝑠)| ≤ 𝜀|𝜌(𝑡) − 𝑠|, 

for all 𝑠 ∈ 𝑉. 

 

Let 𝐾: 𝕋 → ℝ is called a nabla antiderivative of 𝜋: 𝕋 → ℝ, then we define  

 

∫ 𝜋(𝜏)𝛻𝜏

𝑡

𝑠

= 𝐾(𝑡) − 𝐾(𝑠), 

 

for all 𝑠, 𝑡 ∈ 𝕋. 

 

In [50], Let 𝜗(𝑡) be diamond alpha differentiable on 𝕋 for all ∝, 𝑡 ∈ 𝕋, then 

we define 𝜗⋄∝(𝑡) by 

 

𝜗⋄∝(𝑡) =∝ 𝜗∆(𝑡) + (1−∝)𝜗𝛻(𝑡) 

for 0 ≤∝≤ 1. 

 

Theorem 2.1 [50] Let  𝜗, ℎ: 𝕋 → ℝ be diamond alpha differentiable for all ∝

, 𝑡 ∈ 𝕋 and 0 ≤∝≤ 1. 

 

(i) Let (𝜗 + ℎ): 𝕋 → ℝ be diamond alpha differentiable for all 𝑡 ∈ 𝕋, then 

 

(𝜗 + ℎ)⋄∝(𝑡) = 𝜗⋄∝(𝑡) + ℎ⋄∝(𝑡). 

 

(ii)  Let 𝑘𝜗: 𝕋 → ℝ be diamond alpha differentiable for all ∝, 𝑡 ∈ 𝕋, then  

 

(𝑘𝜗)⋄∝(𝑡) = 𝑘𝜗⋄∝(𝑡), 

where t,𝑘 ∈ ℝ. 
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(iii) Let 𝜗, ℎ: 𝕋 → ℝ be diamond alpha differentiable for all ∝, 𝑡 ∈ 𝕋, then 

 

(𝜗ℎ)⋄∝(𝑡) = 𝜗⋄∝(𝑡)ℎ(𝑡)+∝ 𝜗𝜎(𝑡)ℎ∆(𝑡) + (1−∝)𝜗𝜌(𝑡)ℎ𝛻(𝑡). 

 

Definition 2.2 [50] If 𝜗: 𝕋 → ℝ is ⋄∝−integrable for all ∝, 𝑏, 𝑡 ∈ 𝕋, then 

 

          ∫ 𝜗(𝛿) ⋄∝ 𝛿

𝑡

𝑏

=∝ ∫ 𝜗(𝛿)∆𝛿

𝑡

𝑏

+ (1−∝) ∫ 𝜗(𝛿)𝛻𝛿

𝑡

𝑏

 

 

for 0 ≤∝≤ 1. 

 

Definition 2.3 [46, 52] Let 𝜗 ∈ 𝐶𝑟𝑑(𝕋, ℝ), 𝑡 ∈ 𝕋𝑘 and let 𝜗: 𝕋 → ℝ be 

diamond alpha integrable, then 

 

∫ 𝜗(𝜏) ⋄∝ 𝜏

𝜎(𝑡)

𝑡

= 𝜇(𝑡)𝜗(𝑡). 

 

The partial integration formula on the time scale is given by 

 

∫ 𝑢(𝑠)𝑤⋄∝(𝑠) ⋄∝ 𝑠

𝑦

𝑥

= 𝑢(𝑠)𝑤(𝑠)I𝑥
𝑦

− ∫ 𝑢⋄∝(𝑠)𝑤𝜎(𝑠) ⋄∝ 𝑠

𝑦

𝑥

 

 

for 0 ≤∝≤ 1.  

 

Definition 2.4 [25, 51] (Conformable diamond-alpha derivative) Given 

𝜗: 𝕋 → ℝ and 𝛽 ∈ 𝕋, 𝜗 is (𝜆, 𝛽) −diamond alpha differentiable at 𝜂 > 𝛽, if it’s 

diamond alpha differentiable at 𝜂, and its (𝜆, 𝛽) −diamond alpha derivative is 

defined by 

 

          ⋄∝𝛽
𝜆 𝜗(𝜂) = Λ1−𝜆(𝜂, 𝛽)𝜗⋄∝(𝜂)               𝜂 > 𝛽,                          (3)  

 

Definition 2.5 [25, 51] (Conformable diamond-alpha integral) Suppose that 

𝛽, 𝜂1, 𝜂2 ∈ 𝕋, 𝜗 ∈ 𝐶(𝕋), 0 < 𝜆 ≤ 1, 𝛽 ≤ 𝜂1 ≤ 𝜂2, and the function 𝜗 is called 

(𝜆, 𝛽) −diamond alpha integrable on [𝜂1, 𝜂2] if 
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    ⋄∝𝛽
𝜆 𝜗(𝜂) = ∫ 𝜗(𝜂) ⋄∝𝛽

𝜆 𝜂

𝜂2

𝜂1

= ∫ 𝜗(𝜂)Λ1−𝜆(𝜎1−𝜆( 𝜂), 𝛽) ⋄∝ 𝜂

𝜂2

𝜂1

,          (4) 

 

Lemma 2.6 [14] If 𝑓, 𝜀 ∈ 𝐶𝐶𝑟𝑑
1 ([𝜔, 𝑝]𝕋 × [𝜔, 𝑝]𝕋, ℝ) are diamond alpha 

integrable functions and 
1

𝑝
+

1

𝑞
= 1 with 𝑝 > 1 and let 𝜔, 𝑝 ∈ 𝕋 with 𝜔 < 𝑝, 

then 

(5) 

 

In this study, we prove a new fractional inequality of Hilbert-type on time 

scales using the properties of Theorem 1.3 mentioned above. We also obtain 

discrete cases of Hilbert-type inequalities related to some special cases of our 

results. 

 

Main Result 

Theorem 3.1 Let 𝜖0, 𝜏𝑖 , 𝑘𝑖 , 𝜃𝑖 , 𝜖𝑖 ∈ 𝕋, (𝑖 = 1, … , 𝑛). Let 𝑝𝑖 , 𝑞𝑖 > 1, 𝜋𝑖 ≥ 1 be 

constants and 
1

 𝑝𝑖
+

1

 𝑞𝑖
= 1 and let ⋄∝

𝜆,𝛽−differentiable functions and 𝑓𝑖(𝜃𝑖 , 𝜖𝑖) 

be decreasing on [𝜖0, 𝑘𝑖)𝕋 × [𝜖0, 𝜏𝑖)𝕋 and 𝑓𝑖(𝜖0, 𝜖𝑖) = 𝑓𝑖(𝜃𝑖 , 𝜖0) = 0 (i=1,…,n). 

Let 𝑓𝑖
⋄∝1

𝜆,𝛽

, 𝑓𝑖
⋄∝2

𝜆,𝛽

, 𝑓𝑖
⋄∝12

𝜆,𝛽

= 𝑓𝑖
⋄∝21

𝜆,𝛽

 partial derivatives o𝑓𝑖f  and let 

 

(𝑓𝑖
𝜋𝑖(𝜃𝑖 , 𝜖𝑖))

⋄∝1
𝜆,𝛽

⋄∝2
𝜆,𝛽

≤ (𝜋𝑖𝑓𝑖
𝜋𝑖−1(𝜃𝑖 , 𝜖𝑖)𝑓𝑖

⋄∝1
𝜆,𝛽

(𝜃𝑖 , 𝜖𝑖))

⋄∝2
𝜆,𝛽

= 𝑓𝑖
⋄∝12

𝜆,𝛽

(𝜃𝑖 , 𝜖𝑖), 
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then 

(6) 

 

where 𝐵 = 𝐵(𝑘1𝜏1, … , 𝑘𝑛𝜏𝑛) = (𝑛 − ∑
1

𝑝𝑖

𝑛
𝑖=1 )

∑
1

𝑝𝑖
−𝑛𝑛

𝑖=1
∏ [(𝑘𝑖 − 𝜖0)(𝜏𝑖 − 𝜖0)]

1

𝑞𝑖𝑛
𝑖=1 . 

 

Proof. We can write the following inequality 

 

(7) 
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Applying (5), we have 

(8) 

 

Applying the following inequality 

   (∏ 𝑤𝑖

1
𝑞𝑖

𝑛

𝑖=1

)

1

∑
1
𝑞𝑖

𝑛
𝑖=1

≤
1

∑
1
𝑞𝑖

𝑛
𝑖=1

∑
𝑤𝑖

𝑞𝑖

𝑛

𝑖=1

,     𝑤𝑖 > 0    (𝑖 = 1, … , 𝑛),          

 

we find 

 

∏ |𝑓𝑖
𝜋𝑖(𝜃𝑖 , 𝜖𝑖)|𝑛

𝑖=1

(∑
(𝜃𝑖 − 𝜖0)(𝜖𝑖 − 𝜖0)

𝑞𝑖

𝑛
𝑖=1 )

∑
1
𝑞𝑖

𝑛
𝑖=1

 

                                  

≤ (𝑛 − ∑
1

𝑝𝑖

𝑛

𝑖=1

)

∑
1
𝑝𝑖

−𝑛𝑛
𝑖=1

∏ ( ∫ ∫ 𝑓𝑖
⋄∝12

𝜆,𝛽

( 𝜂𝑖 , 𝜑𝑖)

𝜖𝑖

𝜖0

⋄∝
𝜆,𝛽  𝜑𝑖 ⋄∝

𝜆,𝛽  𝜂𝑖

𝜃𝑖

𝜖0

)

1
𝑝𝑖𝑛

𝑖=1

.  (9) 
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From inequality (5) and Fubini’s theorem, we see that 

(10) 

 

Using 𝑘𝑖 ≤ ℎ(𝑘𝑖), we obtain 

 

∫ ∫ …

𝜏1

𝜖0

∫ ∫
∏ |𝑓𝑖

𝜋𝑖(𝜃𝑖 , 𝜖𝑖)|𝑛
𝑖=1

(∑
(𝜃𝑖 − 𝜖0)(𝜖𝑖 − 𝜖0)

𝑞𝑖

𝑛
𝑖=1 )

∑
1
𝑞𝑖

𝑛
𝑖=1

⋄∝
𝜆,𝛽 𝜖𝑛 ⋄∝

𝜆,𝛽 𝜃𝑛 … ⋄∝
𝜆,𝛽 𝜖1 ⋄∝

𝜆,𝛽 𝜃1

𝜏𝑛

𝜖0

𝑘𝑛

𝜖0

𝑘1

𝜖0

 

≤ 𝐵 ∏ ( ∫ ∫(ℎ(𝑘𝑖) − ℎ(𝜃𝑖))(ℎ(𝜏𝑖)

𝜏𝑖

𝜖0

𝑘𝑖

𝜖0

𝑛

𝑖=1

− ℎ(𝜖𝑖)) |𝑓𝑖
⋄∝12

𝜆,𝛽

( 𝜃𝑖 , 𝜖𝑖)|
𝑝𝑖

⋄∝
𝜆,𝛽  𝜖𝑖 ⋄∝

𝜆,𝛽  𝜃𝑖)

1
𝑝𝑖

. 

Remarks 3.2   

i.  In Theorem 3.1, let 𝕋 = ℤ, ∝= 0, 𝜆 = 1, and 𝜋𝑖 = 1, then we see the 

results of (Theorem 1.2, [2]). 

ii. In Theorem 3.1, let 𝕋 = ℝ, ∝= 0, 𝜆 = 1, then we see the results of 

(Theorem 1.4, [2]). 
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Corollary 3.3 In Theorem 3.1, let 𝑛 = 2, 𝜋1 = 𝜋2 = 1. Also let 

𝑓1
⋄∝12

𝜆,𝛽

( 𝜃1, 𝜖1) = 𝑓⋄∝2
𝜆,𝛽

⋄∝1
𝜆,𝛽

( 𝜃1, 𝜖1), 𝑓2
⋄∝12

𝜆,𝛽

( 𝜃1, 𝜖1) = 𝑓⋄∝2
𝜆,𝛽

⋄∝1
𝜆,𝛽

( 𝜃2, 𝜖2). 

 

 If 𝑝1, 𝑝2 > 1 are such that 
1

 𝑝1
+

1

 𝑝2
≥ 1 and 0 < 𝑤 = 2 −

1

 𝑝1
−

1

 𝑝2
=

1

 𝑞1
+

1

 𝑞2
≤ 1, inequality (6) reduces to 

 

(11) 

 

Remarks 3.4 

i. Let 𝕋 = ℝ, ∝= 0, 𝜆 = 1 in (11), then inequality (11) reduces to 

ii.  

(12) 

 

 

iii. Let 𝕋 = ℤ, ∝= 0, 𝜆 = 1 in (11), then inequality (11) reduces to 

74



(13) 

 

Corollary 3.5 In Corollary 3.3, if we take 𝑤 = 1, 𝑝1 = 𝑞2, and 𝑝2 = 𝑞1 with 
1

 𝑝1
+

1

 𝑝2
=

1

 𝑞1
+

1

 𝑞2
= 1  then inequality (11) reduces to 

 

(14) 

 

Remarks 3.6 

i. In Corollary 3.5, If we take 𝕋 = ℝ, ∝= 0, 𝜆 = 1, we have Theorem 4 in [27]. 

ii. In Corollary 3.5, If we take 𝕋 = ℤ, ∝= 0, 𝜆 = 1, we have Theorem 3 in [27]. 

 

Conclusion 

The inequality of Hilbert’s in the different structures has been presented 

before. In this study, we have taken n-dimensional Hilbert inequalities on time 

scales for diamond alpha calculation and have created new inequalities of the 

results presented in previous studies. To be more precise, we have created a new 

form of inequality of Hilbert’s on time scales. The results we have obtained will 

motivate us to work in different areas. 
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1. Introduction 

Breast cancer is a highly heterogeneous disease with significant variability in 

morphologic and pathologic features. Breast cancer, like skin and lung cancer, is 

a risky type of cancer that can metastasize to other organs (Den Oudsten, der 

Steeg, A., & De, 2012; Leone & Leone, 2015). Genetic and epigenetic changes 

in genes regulating mammary epithelial cell proliferation, survival, polarity, and 

differentiation likely initiate breast carcinogenesis.  

Breast cancer has different molecular subtypes based on gene expression 

profiles (Mota et al., 2017; Yee, Borgia, Semenova, Campbell, & Booth, 2023). 

The most common molecular subtypes are luminal A, luminal B, HER2-positive 

(human epidermal growth factor receptor 2), and triple-negative (TNBC) cancers 

(Harbeck et al., 2019; Iqbal Memon, Din Ujjan, & Masroor Bhatti, 2023). 

Luminal A cancer comprises estrogen receptor-positive (ER+) and progesterone 

receptor-positive (PR+) cells. This type of cancer has a lower cell division rate 

than other molecular subtypes and generally has a better prognosis. Luminal B 

cancer consists of ER-positive cells but may not be PR+. This type of cancer is 

more aggressive and has a higher cell division rate than the luminal A type. 

HER2+ cancer cells produce extreme amounts of HER2 protein. This type of 

cancer requires a different treatment approach than other molecular subtypes. The 

TNBC consists of negative cells for both ER and PR receptors and does not have 

HER2 protein. This type of cancer can be more aggressive than other molecular 

subtypes, and treatment options are limited (Den Oudsten et al., 2012). Having 

HER2, activation of ER and/or PR receptors, as well as BRCA (breast cancer 

gene) mutations, which are among the molecular characteristics of breast cancer, 

determines the propensity of the disease (Harbeck et al., 2019). These molecular 

subtypes of breast cancer are essential for its diagnosis, prognosis, and treatment. 

Recently, the focus of research has shifted from the tumor mass to the 

biological character of the tumor, with the molecular level of cancer disease 

elucidated. In this respect, it is known that the success rate of an individualized 

cancer treatment that focuses on the cell in the tumor mass that appears in the 

patient increases. In addition, since breast cancer is a heterogeneous disease in 

general, multidisciplinary approaches should not be ignored when aiming for an 

effective treatment. Breast cancer is 70-80% curable if it is diagnosed early and 

is not metastatic (Harbeck et al., 2019). 

Cancer treatments consist of various methods used to destroy or control its 

growth. Determining a treatment strategy depends on the type and stage of cancer, 

as well as the condition of the patient’s health. Cancer treatments include 

chemotherapy, radiotherapy, surgery, and immunotherapy. Currently, two major 

approaches are used to control breast cancer: regional intervention (surgery and 
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radiation therapy) and systemic treatment. The molecular character of the tumor 

greatly influences which treatment approach is chosen, such as chemotherapy, 

anti-HER2 therapy for HER2+ patients, endocrine therapy, and immunotherapy 

(Harbeck et al., 2019). However, current therapies are not fully adequate for the 

treatment of invasive breast cancer. In such patients, current therapies aim to 

control symptoms, improve the patient’s life quality, and prolong survival, even 

to some extent (Iqbal Memon et al., 2023). These goals accompany the planning 

of numerous ongoing studies. 

Multiple therapies, proposed as a combination of therapeutic approaches, 

improve the clinical management of diseases (Farokhzad & Langer, 2006). 

Especially in the fight against a multifaceted and treatment-resistant disease such 

as cancer, the ability to strike the disease from many angles at once increases the 

effectiveness of treatment. For example, combining hyperthermia, which aims to 

treat by increasing the temperature in the target tissue, and immunotherapy, 

which uses the patient’s defense system, with other treatments (chemotherapy, 

radiotherapy, etc.) increases the effectiveness of treatments. Immunotherapy 

boosts the efficacy of surgery, chemotherapy, hyperthermia, radiotherapy, or 

targeted therapies used in cancer treatment (Chen & Mellman, 2013). 

 

2. Passive immunity for breast cancer 

The immune system plays an extremely important role in cancer 

development and in response to chemotherapy and clinical outcomes. Metastatic 

breast cancer is a heterogeneous disease that influences immune cells in the 

bloodstream and might lead to systemic immune anomalies. Tumor-infiltrating 

lymphocytes (TILs) are associated with a high pathological response to 

neoadjuvant chemotherapy in aggressive breast cancer (Poncin et al., 2021; 

Wagner et al., 2019). Circulating immune cells, including neutrophils, 

lymphocytes, and eosinophils, affect responses to chemotherapy and cancer 

outcomes. On the other hand, TILs are crucial in improving the chemotherapy 

response and clinical outcomes in all breast cancer subtypes. 

To form a tumor mass, cancer cells can escape the immune system through a 

decrease in antigen presentation, a diminution of immune effector cells, and an 

increase in the expression of checkpoint molecules. The presence of TILs is 

reduced in ER+ breast cancer. TILs are more common in HER-2+ and TNBC, 

but also in hormone receptor-positive breast cancer. A study on immune cells 

related to ductal carcinoma found that 28% of cases were TIL-high (Agahozo et 

al., 2020). In this study, it has been reported that cases with ER+ HER2+ subtype 

have a higher proportion of CD8+ T cells than TNBC cases. The increase in ER 

expression may be responsible for this effect. This creates a Th2 immune 
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environment and lowers the number of MHC class II molecules in breast cancer 

cells. Classical HLA molecules (-A, -B, and -C) are down-regulated in 30-40% 

of higher-grade breast tumors (Nicolini, Rossi, & Ferrari, 2023). In contrast, non-

classical HLA-E, HLA-F, and HLA-G molecules promote immune escape. 

TNBCs have lymphocyte-predominant tumors, benefiting from a 10% increase 

in TIL (Stanton & Disis, 2016). HER2+ breast cancers have similar immune 

infiltrate levels (Hwang et al., 2019). Hormone receptor-positive HER2-negative 

tumors have the minimum immune infiltrate but show a worse prognosis with 

increased FOXP3 (forkhead box P3, a protein from the FOX family) regulatory 

T-cell infiltrates. 

Immune evasion may occur via the involvement of molecules in antigen 

presentation and mutations in interferon (IFN) response genes (Gatti-Mays et al., 

2019). Pathway changes that promote cancer growth, such as mutations in the 

PI3K (phosphoinositide 3-kinases) pathway, are essential for suppressing or 

inhibiting the activation of T cells. Elevated frequencies of programmed cell 

death ligand 1 positive (PD-L1+) tumor-associated macrophages and depleted T 

lymphocytes with exhaustion were seen in high-grade ER+ and ER− cancers 

(Wagner et al., 2019). Another study demonstrated that the HER2+ subgroup had 

the lowest PD-L1-SP142 expression on tumor cells, indicating a more robust 

antitumor immune response in HER2+ ductal carcinoma in situ (Agahozo et al., 

2020). Also, HER2-negative metastatic breast cancer caused elevated monocyte 

levels and reduced CD4+ T cells (Chauhan et al., 2024). 

Tumor cells could increase the production of indoleamine-pyrrole 2,3 

dioxygenase (IDO) in response to interferon-gamma and ER signaling. Cancers 

classified as ER+ exhibit elevated levels of IDO compared to ER cancers 

(Nicolini et al., 2023). A study examining the expression and distribution levels 

of FoxP3 and CD8 in breast carcinoma found that overexpression of FoxP3 and 

a high FoxP3+/CD8+ ratio were associated with adverse outcomes in terms of 

both overall survival and disease-free survival (Peng et al., 2019). The CD8+ 

cytotoxic T lymphocytes (CTLs) and FoxP3+ regulatory T (Treg) cells might 

behavior as prognostic markers for breast cancer patients. Patients with metastatic 

breast cancer who exhibit systemic immunological markers have an immune-

suppressed environment, which is associated with persistent chronic 

inflammation. However, in a normal process, Treg cells maintain immune 

homeostasis in the body by suppressing excessive immune system reactions. In 

contrast, in cancer like breast cancer, this role reverses to promoting tumor 

development and growth (Liang et al., 2015). The immunosuppressive effect of 

increasing Treg cells in the tumor microenvironment contributes to cancer 

progression, which diminishes immune responses to cancer. In breast cancer, a 
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significantly higher number of Treg cells has been considered as the marker of a 

poor prognosis (Hashemi et al., 2020). Treg cells suppress the activity of 

antitumoral immune cells, such as CD8+ cytotoxic T cells and NK cells (Hashemi 

et al., 2020; Togashi, Shitara, & Nishikawa, 2019). This suppression is usually 

mediated by molecules such as CTLA-4, IL-10, and TGF-β. These molecules 

inhibit the activation of T cells and limit antigen presentation by impairing the 

function of dendritic cells (DCs). In these ways, Treg cells resist 

immunotherapies, creating resistance to therapies and reducing their 

effectiveness in cancer treatments. Hence, therapeutic strategies that inhibit 

function of Treg cells enhance immunotherapies’ effectiveness (Shan, 

Somasundaram, Bruno, Workman, & Vignali, 2022). 

On the other hand, tumor-promoting immune cells, including Treg cells and 

myeloid-derived suppressor cells (MDSCs), perform an essential function in 

maintaining immune homeostasis and peripheral tolerance (Binnewies et al., 

2018; X. Lei et al., 2020; Sadeghi, Dehnavi, Sharifat, Amiri, & Khodadadi, 

2024). Granulocytic or polymorphonuclear MDSCs (PMN-MDSCs) and 

monocytic MDSCs (M-MDSCs) are two types of tumor-promoting immune cells 

within the tumor microenvironment (TME) (Gatti-Mays et al., 2019; Zhao et al., 

2018). They have the potential to increase angiogenesis, stimulate cancer cell 

migration towards endothelial cells, and facilitate metastasis. Inhibiting MDSC 

trafficking has been shown to enhance T cell-based immunotherapeutic efficacy.  

To summarize, TILs, Treg cells, MDSCs, and some mediator molecules 

(IFNs, IDO, etc.) significantly impact the treatment response and prognosis of 

breast cancer. Oncogenic cells have mechanisms to evade the immune system, 

affecting treatment outcomes. Different breast cancer subtypes vary in their 

immune profiles, which influences treatment strategies. Finally, examining 

immune responses and immune-related molecules might serve as biomarkers for 

estimating the rate of breast cancer development and therapeutic efficacy. 
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3. Immune cells in the tumor microenvironment 

In carcinogenesis, cancer development, and metastasis, the TME is an 

essential player. Additionally, immune cells play a crucial role in treating and 

preventing breast cancer (Figure 1). Effector T cells, DCs, natural killer (NK) 

cells, M1 polarized macrophages, and N1 polarized neutrophils are types of anti-

tumor immune cells (X. Lei et al., 2020; Sadeghi et al., 2024). These cells 

recognize neoantigens and ligands, serving in chronic inflammation and 

immunosurveillance. CD8+ CTLs are the primary lymphocyte subset that 

eliminates cancer cells that express major histocompatibility complex class I 

molecules (MHC-I). Antigens presented by DCs can induce the transformation 

of CD8+ T cells into effector CD8+ T cells that possess cytotoxic capabilities 

(Sadeghi et al., 2024). Activated CTLs can move into the inflammatory 

environment as directed by chemokines, facilitated by the expression of CXCR3 

(C-X-C Motif Chemokine Receptor 3). Besides, CD4+ T cells can stimulate the 

activation of DCs by delivering tumor antigens to CD8+ T cells or by triggering 

the synthesis of cytokines and co-stimulatory molecules, promoting the activation 

of DCs and enabling them to activate CD8+ T cells efficiently. 

As breast cancer progresses, immune cells infiltrate an increase in tumor 

parenchyma and stroma, including DCs, B cells, CD4+ and CD8+ cytotoxic T 

cells, and macrophages. Adoptive transfer of breast TILs is one experimental 

approach that has the potential to reverse metastases and encourage the 

development of novel T-cell immunotherapy treatments. γδ T-cells and NK cells 

in the TME have also been associated with better prognosis in all breast cancer 

subtypes (Alaluf, Shalamov, & Sonnenblick, 2024; Sadeghi et al., 2024). 

Understanding these roles is essential for the prevention and treatment of breast 

cancer. 

Although the exact function of B lymphocytes in the TME as tumor 

antagonizers is poorly understood, they have been associated with positive 

therapeutic results in breast cancer patients (Laumont, Banville, Gilardi, Hollern, 

& Nelson, 2022). According to some research, B cells may promote cancer by 

reducing CTL function, increasing angiogenesis, and attracting MDSCs through 

cytokines. It has been reported that Treg cells and Breg (B regulatory) cells are 

interdependent in the development of metastasis in breast cancer patients 

(Ishigami et al., 2019). The specific roles of various subsets of tumor-infiltrating 

B lymphocytes within the TME are expected to be revealed by future research. 
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Figure 1. Classification of cell types involved in the identification and destruction 

of cancer cells, as well as in immunosuppression, tumor growth facilitation, and 

immune evasion.
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4. Immune-boosting vaccines and therapies for breast cancer 

Immunotherapy targets tumors specifically while minimizing damage to 

healthy cells. Various strategies are employed to utilize the immune system for 

cancer treatment, including cancer vaccines (therapeutic peptide and protein-

based, B cell-based, dendritic cell-based, and DNA/mRNA-based), immune 

checkpoint (PD-1, PD-L1, CTLA-4) inhibitors, directed monoclonal antibodies,  

antibody-drug conjugates, bispecific antibodies, adoptive cellular therapy, TLR 

agonists, autologous tumor cells, cytokine-based immunotherapy, γδ T cells, 

tumor-associated macrophages, oncolytic viruses, and immuno-metabolic targets 

(Alaluf et al., 2024; Davodabadi et al., 2022). 

A study compared the effects of margetuximab and trastuzumab combined 

with chemotherapy on survival in patients with previously treated HER 2-positive 

breast cancer. Their research focused on polymorphic allelic variations (158V or 

158F) of CD16A, suggesting enhanced survival for margetuximab in CD16A-

158FF patients and trastuzumab in CD16A-158VV patients (Rugo et al., 2023). 

Another study uses murine HER2+ breast cancer models to test the effect of anti-

HER2/neu and anti-4-1BB monoclonal antibody (mAb) combination therapy and 

found that adding anti-4-1BB mAb to anti-HER2/neu mAb potentiated the 

cytotoxic antitumor response. However, this combination therapy was shown not 

to evoke immune memory, and tumors recurred. It has been stated that this 

situation can be overcome with the dose regulation of anti-4-1BB mAb to 1 mg/kg 

(Kim et al., 2022). 

However, T-cell activity is regulated by modulating the creation of 

costimulatory signals via several mechanisms. T cell activation encompasses (i) 

the primary signal, which comes from the binding of the T cell receptor (TCR) to 

the MHC molecule presented by an antigen-presenting cell (APC), and (ii) the 

costimulatory signal, which may result from several specific T cell-APC 

interactions (Chae et al., 2018). Several signaling pathways have been implicated 

in the modulation of T cell activity, including CTLA-4, PD-1, and PD-1/PD-L1 

checkpoint inhibitors. In a study developing a tetravalent bispecific PD-1 x 

CTLA-4 molecule (MGD019) to achieve optimal co-blockade of PD-1 

neutralization and maximal CTLA-4 inhibition, experiments were conducted in 

vitro in human cells, Cynomolgus monkeys and humans (Berezhnoy et al., 2020). 

In solid tumor cancer indications, such as breast cancer, combined 

immunotherapy using antibodies directed against PD-1 and CTLA-4 has shown 

better clinical effects than single pharmaceuticals. 

Another cancer therapy involves the use of autologous tumor-infiltrating 

lymphocytes. In adaptive cellular therapy (ACT), a small number of anti-tumor 

cells with appropriate properties are taken from the individual, identified, and 
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then grown ex vivo for treatment (Rosenberg, Restifo, Yang, Morgan, & Dudley, 

2008). There has been remarkable success in treating hematological malignancies 

with chimeric antigen receptor (CAR)-T cell therapy, leading to the development 

of new ACTs like CAR-macrophage, CAR-natural killer, CAR-natural killer T, 

and CAR-γδT (P. Zhang, Zhang, & Wan, 2023). In addition to cells, exosomes 

derived from CAR-T cells by secreting perforin and granzyme B have 

demonstrated efficacy in diminishing the development of triple-negative breast 

cancer without noticeable side effects in vivo (Yang et al., 2021). 

Tumor-based cancer vaccines have several advantages, like ensuring more 

safety than chemotherapy and preventing malignant tumor recurrence through 

long-term immunological memories. Nanotechnology-based nanoparticles are 

used as adjuvants, immunogens, and delivery vehicles to activate the immune 

system (Davodabadi et al., 2022). A study uses nanoparticles to deliver a mRNA 

vaccine encoding tumor antigen MUC1 (type 1 transmembrane mucin) to DCs in 

lymph nodes, activating and expanding tumor-specific T cells (Liu et al., 2018). 

The NP-based vaccine successfully expresses tumor antigen, induces a robust and 

antigen-specific response against TNBC 4T1 cells, and enhances anti-tumor 

immune response. 

Peptide-based vaccination has been explored as an alternative to treatments 

for tumors. Peptides are based on a region of the epidermal growth factor receptor 

(EGFR) extracellular domain IV, interrupting immune tolerance and stimulating 

immune response against cancer. It was mentioned that the EGFR p580 antiserum 

inhibited the growth of MDA-MB-453 breast cancer cells, which expresses 

HER2 but not EGFR (Doyle et al., 2018). 

Lastly, bispecific antibodies, autologous tumor cells, TLR agonists, γδ T cells, 

tumor-associated macrophages, radiotherapy, oncolytic viruses, cytokine-based 

immunotherapy, and immuno-metabolic targeting are other modalities employed 

in the treatment of breast cancer.
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Table 1. Immunotherapy approaches and therapeutic targets have been examined 

in various studies. 

Immune Therapy Treatment Targets Reference 

Directed 

Monoclonal 

Antibodies 

Trastuzumab and 

Margetuximab 

Margetuximab-enhanced 

chemotherapy is a therapeutic 

option for patients with 

pretreated HER2+. 

(Rugo et al., 

2023) 

anti-HER2/neu and 

anti-4-1BB 

Treatment with anti-4-1BB mAb 

causes different types of 

immunological memory in naive 

and activated CD8+ T cells. 

(Kim et al., 

2022) 

Antibody-Drug 

Conjugates 

Trastuzumab 

emtansine (T-DM1) 

Clinical practice on HER2+ 

breast cancer patients. 

Trastuzumab: HER2-directed 

monoclonal antibody. 

Emtansine: Cytotoxic 

microtubule polymerization 

inhibitor. 

(Michel, 

Bermejo, 

Gondos, 

Marmé, & 

Schneeweiss, 

2015) 

Immune Checkpoint 

Inhibitors (PD-1, 

PD-L1, CTLA-4) 

Engineered 

tetravalent 

bispecific PD-

1xCTLA-4 

molecule 

(MGD019)  

Dual PD-1 and CTLA-4 

blockade. 

(Berezhnoy et 

al., 2020) 

Adaptive Cellular 

Therapy 

Exosomes produced 

by mesothelin 

(MSLN)-targeted 

CAR-T cells  

Mesothelin-expressing triple-

negative breast cancer. 

(Yang et al., 

2021) 

Cancer Vaccines 

Therapeutic Peptide 

and Protein-Based 

Iso-aspartyl (iso-Asp)-modified 

EGFR p580 immune sera inhibit 

the growth of EGFR-

overexpressing human A431 and 

MDA-MB-453 tumor cells that 

express HER2 but not EGFR. 

(Doyle et al., 

2018) 

DNA/mRNA-Based 
MUC1 (type 1 transmembrane 

mucin) to DCs in lymph nodes. 

(Liu et al., 

2018) 
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5. Immune approaches as adjunctive therapy to conventional therapies 

Immune approaches as adjunctive therapies have gained significant attention 

in recent years, aiming to enhance the efficacy of conventional cancer treatments 

like chemotherapy, radiation, and surgery by strengthening the immune system 

in the body. These approaches include immune checkpoint inhibitors, oncolytic 

viruses, CAR-T cell therapy, cytokine therapies, cancer vaccines, ACTs, 

combination therapies, and personalized medicine approaches (Blattman & 

Greenberg, 2004; Blattman, Greenberg, Guth, & Dow, 2004; H. Zhang & Chen, 

2018). Immune checkpoint inhibitors inhibit checkpoint proteins, while CAR-T 

cell therapy extracts genetically engineered T cells to target cancer cells. Cancer 

vaccines enhance the immune response against specific cancer antigens, whereas 

oncolytic viruses selectively target and eradicate cancer cells while eliciting an 

immunological response. Cytokine treatments enhance the immune response 

against cancer, and ACT infuses expanded and genetically modified immune 

cells to eliminate residual cancer cells and prevent recurrence. Combination 

therapies, such as chemotherapy and immunotherapy, radiation and 

immunotherapy, and surgery and immunotherapy, target residual disease and 

reduce the risk of recurrence. However, challenges include developing novel 

strategies for tumor resistance, managing immune-related adverse events, 

identifying predictive biomarkers, and optimizing therapy timing and sequence 

(Emens et al., 2024; Y. Lei, Li, Huang, Zheng, & Liu, 2021). 

Treatment efficacy for TNBC is greatly improved when the mRNA-

expressing tumor antigen MUC1 vaccination is administered in combination with 

an anti-CTLA-4 monoclonal antibody (Liu et al., 2018). Nanotechnology offers 

ideal tools for multi-therapy approaches. The research combines a drug 

combination methyltryptophan-paclitaxel (MP) by attaching the 

immunosuppressive enzyme indoleamine-2,3-dioxygenase (IDO) inhibitor to the 

chemotherapeutic agent paclitaxel (PTX) (Hu, Zheng, Xu, Gao, & Lu, 2020). MP 

binds to human serum albumin, enhancing the concentration of D-1-

methyltryptophan (D-1MT) in tumors. MP NPs enhance the anti-tumor effect by 

strengthening the codelivery of PTX and D-1MT in tumors. MP NPs improve the 

immune environment, increasing effector CD8+ T cells and decreasing Treg 

cells. 

New research has shown that γδ T cells are an immune effector subgroup that 

might be used to create innovative cancer immunotherapies. The genotype of 

mitochondrial DNA influences the composition of the gut microbiota, which 

demonstrates the connections of mitochondria with γδ17 T cells (Kawaguchi, 

Maeshima, & Toi, 2022). 
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6. Conclusion 

In conclusion, breast cancer is a highly heterogeneous disease influenced by 

various molecular subtypes, genetic mutations, and interactions with the immune 

system.  Breast cancer patients are cured via different treatment methods, such as 

surgery, chemotherapy, and radiation therapy, alongside advanced 

immunotherapy techniques. Understanding the TME and the immune system’s 

involvement is critical in improving prognosis and treatment response. In breast 

cancer, TILs assist as prognostic indicators for chemotherapy response and 

survival. Immunotherapy such as immune checkpoint inhibitors, cancer vaccines, 

CAR-T cell therapy, and other adjunctive therapies have offered promise as an 

adjunct to the existing treatment regimens. Such agents, which harness the 

immune responses to eradicate cancer, have been shown to increase the survival 

rates of patients with especially very aggressive types of breast cancer like TNBC 

and HER2+. However, cancer treatment utilizing these therapies also presents 

challenges regarding tumor evasion, immune-mediated side effects, and the need 

for individualized strategy. Exploring potential cancer immunotherapy based on 

biomarkers, new targets for drug therapy, and methods for treatment 

personalization gives hope that effective and lasting control of malignancies will 

be possible. 
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1. Introduction 

Cancer is a significant disease that threatens human health worldwide. Despite 

significant advancements in cancer treatment, the morbidity and mortality rates 

remain highly prevalent, according to the 2022 global cancer statistics  (Bray et 

al., 2018, 2024). In cancer treatment, although traditional methods such as 

surgery, chemotherapy, and radiotherapy are used, each of these methods has its 

own unique limitations in terms of efficacy, cost, and undesirable side effects. In 

this regard, the need for novel and more effective treatment methods to address 

these deficiencies has increased. Magnetic fields have been widely suggested as 

a potential therapeutic modality due to their high efficacy, low side effects, wide 

range of applications, and low cost advantages, and their effects on biological 

systems are being closely studied by scientists (L. Zhang et al., 2017). 

Magnetic fields are commonly used in industrial and agricultural production, 

science and technology medicine, and other applications. A magnetic field can 

have an effect on a wide range of biological metabolism and processes in cells 

and organisms. In the literature, magnetic fields have been reported to have anti-

carcinogenic potential both in vivo and in vitro, additionally, that magnetic 

treatment has potential for pain reduction, wound healing support, osteonecrosis, 

regulation of muscle functions, peripheral nerve regeneration, and anti-

inflammation (Ding et al., 2011; Eccles, 2005; Jing et al., 2010; Kiss et al., 2013; 

Schuster & Rapoport, 2016; Shang et al., 2019; Strauch et al., 2007; Suszyński et 

al., 2014; Zhao et al., 2017; Zhu et al., 2017). Compared to existing treatments, 

magnetic fields hold an important place in cancer therapy due to their reliability, 

high efficiency, low cost, non-invasive nature and absence of scarring and 

infection risks. Magnetic fields are known to suppress angiogenesis of tumor and 

enhance the immune response in living organisms. Magnetic fields have an effect 

on biological functions at the cellular level by affecting, cell cycle, cell 

morphology, mitochondrial function, and cell membrane structure. The effect of 

the magnetic field observed at the molecular level leads to tumor suppression by 

interfering with DNA synthesis, reactive oxygen species (ROS) levels, epidermal 

growth factor receptor orientation, and the transmission of second messenger 

molecules (G. Zhang et al., 2023a). This review aims at summarising current 

knowledge of magnetic field therapy on cancer and its underlying mechanisms, 

as well as future prospects of magnetic field therapy. 

 

2. Magnetic and Electromagnetic Fields 

Magnetic field (MF) is the force field that forms around magnets or a moving 

electric charge (Prša & Kasaš-Lažetić, 2018). The magnetic field produced by 

natural magnets is generated by the alignment and mutual reinforcement of the 
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magnetic moments of atoms in a certain order. Electromagnetic fields (EMF) are 

generated by electromagnets or current-carrying wires and produce a magnetic 

field that varies over time (A. Xu et al., 2021b).  

In the magnetic field, the international unit Tesla (T) is the unit of magnetic 

flux density. One Tesla is equal to one Weber per square meter, which is equal to 

104 gauss (G), which is the unit of magnetic field in the centimeter-gram-second 

system. So, 1 G = 100 µT. The magnetic flux density is proportionate to the 

magnetic permeability of the magnetic field and the magnetic field strength 

(Maffei, 2022b). The magnetic flux density can be calculated by the following 

formula: 

𝐵 = 𝜇 × 𝐻 

 

B: magnetic flux density (tesla) 

μ: magnetic permeability (henry/meterkilogram-second squared) 

H: magnetic field strength (amperes/meterkilogram) 

 

Frequency refers to the rate of change over time of a periodic quantity, such 

as the instantaneous field strength of a low-frequency electric or magnetic field. 

The unit of frequency, a measure of the number of cycles per unit of time, is the 

Hertz (Hz) (Anonymous, 2024). The power flux density of the electromagnetic 

field (S), consisting of the energetic fractions of the magnetic field and electric 

components, is measured in watts per square meter (W m-2) (Maffei, 2022a). 

 

2.1. Classification of Magnetic Field 

Magnetic fields (MF) are categorised into two types according to their 

properties: constant magnetic field (CMF) or dynamic magnetic field (DMF) (Y. 

Liu et al., 2024a). CMF can be generated by permanent magnets or solenoids with 

unidirectional currents, also called as magnetostatic field (MSF) or static 

magnetic field (SMF) (G. Zhang et al., 2023b). DMF can be categorised 

according to the mode of magnetic field generation, which varies with time: 

geomagnetic field (GMF), pulsating magnetic field (PuMF), pulsed magnetic 

field (PMF), and alternating magnetic field (AMF) (Hildebrandt, 2002; A. Xu et 

al., 2021a; G. Zhang et al., 2023b). AMFs are produced either by a regularly 

moving magnet or by an electromagnetic coil with a current of a given frequency. 

PMFs are generated by electromagnetic coils fuelled by current pulses, PuMFs 

by electromagnetic coils fuelled by current from rectifier data and GMFs by the 

Earth and the ionosphere (Guo et al., 2024; Maffei, 2022a). 

SMFs are classified according to the magnetic field intensity as low MFs (<1 

mT), medium MFs (1 mT - 1 T), high MFs (1 T - 5 T) and ultrahigh MFs (>5 T) 
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(Hunt et al., 2009; Y. Liu et al., 2024b; Van Huizen et al., 2019b). According to 

frequency, magnetic fields can be subdivided into low frequency MF, radio-

frequency MF, medium frequency MF and high frequency MFs (Figure 1) (Y. Liu 

et al., 2024b). The treatment of magnetic fields involves two mechanisms: non-

thermal effect (non-ionising radiation, NI) and thermal effect (ionising radiation).  

 

Figure 1. Classification of magnetic field types. 

 
 

2.2. Use of Magnetic Field in Biological Systems 

Magnetic fields have been known to have biologically effects on living 

organisms since the mid-19th century through the induction of electric fields and 

currents (Gaffey & Tenforde, 1981). Specific magnetic properties, so-called 

biomagnetism, are known to exist in different tissues and organs in organisms (G. 

Zhang et al., 2023b). In the literature, it has been reported that the magnetic 

susceptibilities of cellular lipid protein, and water components in living 

organisms differ (Zablotskii et al., 2018). Shin et al. reported that investigating 

brain microstructural information based on magnetic susceptibility differences of 

iron and myelin can be used as a useful tool to improve understanding of disease 

pathogenesis and lesion characterization, as they are involved in normal brain 

function and are important biomarkers of neurological disorders (Shin et al., 

2021). Thus, the application of biomagnetism differences between biological 

components in disease detection and diagnosis is of interest in the medical field.  

SMFs, which cause various physio-chemical effects because of the intrinsic 

magnetism of organisms, can alter the position, orientation and morphology of 

intracellular substructures and affect various biological metabolism and 
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processes, including structural adaptation, proliferation, and stress responses (Tao 

et al., 2019). Therefore, research into stimulating living cultures with different 

types of magnetic fields is also important. SMFs are widely used in many fields 

such as industrial and agricultural production, modern science and technology, 

especially in medicine and healthcare. The process of magnetic field generation 

and its accurate quantification as a factor that impacts cells, tissues and organisms 

is the most important research topic of magnetic fields in biotechnology. In the 

literature, it has been reported that magnetic resonance imaging resolution and 

imaging capabilities have improved with the increase in SMF intensity and 4-9.4 

T research systems have been developed for clinical imaging applications (Tian 

et al., 2021). Effects of static or oscillating weak magnetic fields on stem cells, 

calcium concentration, electron transfer in cryptochrome, ROS, circadian clock, 

action potentials, anxiety, analgesia, development, neuronal activities, memory, 

DNA, genetics and many other functions have also been reported (Van Huizen et 

al., 2019a; Wang et al., 2022; J. Xu et al., 2021; Zadeh-Haghighi & Simon, 2022). 

The fact that the effects of SMFs used in medicine on biological systems and their 

underlying mechanisms have not yet been fully elucidated has led to the need for 

further investigation of magnetic fields (Table 1). 
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Table 1. The biological effects of magnetic fields 

Tumor cells Application conditions Effect of application Ref. 

Human 

neuroblastoma (SH-

SY5Y) 

1 mT, 50 Hz DMF for 72 h Increased ROS levels 

Induced apoptosis 

(Benassi 

et al., 

2016) 

Human breast cancer 

(MCF-7)  

10 mT SMF for 24 and 48 h Decreased viability 

Decreased 

differentiation 

Increased ROS levels 

(Hajipour 

Verdom et 

al., 2018) 

Human breast cancer 

(MCF-7 and MDA-

MB-231)  

0.011 T, 8 Hz PMF for 

twice a day for 5 days 

Decreased viability 

Inhibited cell 

proliferation 

Induced cell death  

Induced cellular 

senescence 

(Pantelis 

et al., 

2024) 

MCF-7 and MDA-

MB-231 cell lines  

1 mT, 50 Hz ELF-MF for 

24 h  

Decreased viability 

Inhibited cell 

proliferation 

(Elexpuru

-Zabaleta 

et al., 

2023) 

Mouse breast cancer 

(4T1) 

~150 mT SMF for 24 h Inhibited cell migration 

Repressed telomerase 

activity 

(Fan et al., 

2020) 

Jurkat Lymphoma 

cells 

4.75 T SMF Inhibited cell 

proliferation 

 

(Aldinucci 

et al., 

2003) 

Human Epidermal 

Stem Cells (hESC) 

5 mT, 50 Hz ELF-EMF for 

7 days (30 min/day) 

Promoted cell 

proliferation 

Increased cell growth 

Increased proportion of 

S-phase cells 

(M. Zhang 

et al., 

2013) 

Prostate cancer 

(LNCaP, PC3, and 

DU145) 

0.2 mT, 60 Hz MF Decreased cell growth 

Induced apoptosis 

through ROS 

(Koh et 

al., 2008) 

Male Wistar rats 7 mT, 50 Hz ELF-MF for 

24 h 

Stimulated pro-

inflammatory cytokines 

(Wyszkow

ska et al., 

2018) 

Human leukaemia 

(U937) 

6 mT SMFfor 72 h Increased intracellular 

Ca2+  

Mitochondria localized 

near nucleus 

(Dini et 

al., 2009) 
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3. The Effect of Magnetic Fields in Cancer Therapy 

Cancer cells can be affected by MFs to different degrees and this effect is 

known to be related to non-thermal (non-ionising radiation) and thermal (ionising 

radiation) mechanisms in the treatment of MFs. High-frequency MFs (gamma 

rays and X-rays, etc.) cause direct damage to DNA, while low-frequency MFs 

(LF-MFs) have a biochemical effect on the reactions of the cells (Diab, 2019). 

ELF-MFs have been found to have anticancer activity, to reduce the risk of certain 

tumors, and to have potential benefits in the healing process of cancer patients, 

according to numerous studies in the literature (Khan et al., 2021). As a result, 

MFs can be proposed as a strategy for cancer therapy. 

 

3.1. Thermal Effects of Magnetic Field Therapy  

Hyperthermia (HT) is a widely used anticancer treatment modality in 

combination with radiotherapy and chemotherapy to increase the body's tissue 

temperature, based on the application of heat (39-45 ◦C) to prevent the growth of 

cancerous cells and kill them (Chang et al., 2018; X. Liu et al., 2020; Peiravi et 

al., 2022).  The aim is to increase the sensitivity of tumor tissues and, on the other 

hand, to affect the defence system (Chicheł et al., 2007). The increase in tissue 

temperature with HT can lead to oxygenation of the tumor by altering vascularity 

and increasing blood flow, as well as killing cells by affecting cell membranes, 

nucleic acid repair enzymes, proteins, and cellular structures. However, although 

this method triggers the death of tumor cells, it can cause serious side effects as 

it also affects healthy tissues (Peiravi et al., 2022). Therefore, it is recommended 

to use nanotechnological methods to increase the sensitivity of HT with a 

harmless, effective, and easy treatment approach. Studies have shown that 

nanoparticles (NPs) induce DNA damage and expression of heat shock proteins 

by applying heat only to tumor tissues in HT and direct cells to death (Szwed & 

Marczak, 2024). 

Magnetic hyperthermia (MHT) is based on the principle of heat generation by 

increasing the hyperthermia efficiency of magnetic nanoparticles (MNPs) in the 

presence of AMF, and thus, with the widespread use of nanotechnology, MHT 

has been proposed as an alternative method in tumor therapy (Beik et al., 2016; 

GILCHRIST et al., 1957; Peiravi et al., 2022). The MNPs-mediated MHT 

(MNPs-MHT) therapeutic modality has a great advantage in that it allows the 

magnetic killing of cancer cells without the need for deep tissue penetration and 

without damaging the surrounding normal tissues (Kumar & Mohammad, 2011; 

Shubayev et al., 2009). MNPs-MHT enables the realization of intracellular 

hyperthermia by applying therapeutic heat directly to cancer cells and, as a result 

of these therapeutic advantages, MNPs-MHT-based cancer therapies have been 
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transferred from the laboratory stage to clinical studies and used in the treatment 

of breast, prostate, and glioblastoma cancer (Acar et al., 2022; Espinosa et al., 

2018; Jordan et al., 1999). Though MNPs-MHT treatment has been applied in 

clinical trials, the obstacles limiting the efficacy of MNPs-MHT on cancer 

therapy need to be investigated to overcome the challenges of this therapeutic 

approach. 

In MNPs-MHT treatment, one of the main aims is to synthesis multifunctional 

MNPs with appropriately functionalized surfaces that exhibit the highest possible 

saturation magnetization using antibodies, chemical compounds, and DNA 

probes allowing them to selectively bind to target tissues or cells. Furthermore, 

while the shape and size of MNPs are important for their therapeutic efficacy, 

surface modifications that help to maintain their stability and biocompatibility are 

also important (Rajan & Sahu, 2020). Polyethylene glycol (PEG), 

polyethyleneimine (PEI), polyvinyl alcohol (PVA), silica and 

polyvinylpyrrolidine (PVP) are the most commonly used biocompatible coating 

materials for MNPs (Cho et al., 2019).  MNPs are used in bioimaging, cell 

labelling and targeted drug delivery, particularly in hyperthermia (Bañobre-

López et al., 2013; Dey et al., 2017; Kolosnjaj-Tabi et al., 2013; F. Liu et al., 

2011; Solak et al., 2021). The application of colloidal iron oxide and iron oxide-

based core-shell nanostructures has shown promising potential in this field due 

to their high efficiency in carcinogenic cell destruction while showing limited 

toxicity to normal cells (Kossatz et al., 2014; Martinelli et al., 2019; Peiravi et al., 

2022). In addition to being minimally invasive as it is injected intra-tumorally or 

intravenously, this method can provide sufficient thermal dosage to the targeted 

area while sparing healthy tissue. After the MNPs reach the target, the heat 

generated by the application of an external AMF is limited to the area covering 

the MNPs and is directed throughout the tissue (Peiravi et al., 2022). With this 

treatment method, it has been shown in the literature that the amount of iron-

based nanoparticles will not cause toxicity in healthy cells and that most of the 

MNPs are evacuated by the body in a short time after treatment (Fukuda et al., 

2012; Herring et al., 2013; Kim et al., 2011; LeBrun & Zhu*, 2018). 

 

3.2. Non-Thermal Effects of Magnetic Field Therapy 

Non-thermal effects of MF can be defined as their direct interaction with 

biological cells without relying on the principle of heat (Israel et al., 2013; A. Xu 

et al., 2021a). In addition to having antiproliferative, apoptotic, autophagic, 

angiogenic, and antimetastatic effects in cancer cells, MFs have also been 

reported to stop the cell cycle and improve the inflammatory response (Figure 2) 

(A. Xu et al., 2021a). 
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Figure 2. Potential anticancer effects of magnetic field 

 

  The cell cycle, which is closely associated with cell growth and death, 

includes G1, S, G2 and M phases and abnormal expression of cell cycle proteins 

in cancer cells may lead to uncontrolled cell proliferation (Otto & Sicinski, 2017). 

Most of the current chemotherapy and radiotherapy methods disrupt the integrity 

of DNA at cell cycle checkpoints, thereby inhibiting the proliferation of cancer 

cells and leading to their death. Therefore, targeting these cycle proteins is 

considered as a therapeutic strategy (Otto & Sicinski, 2017). The literature has 

described that MF suppresses the cell proliferation by keeping them in G2 phase 

(Miyakoshi, 2005).  Chen et al. observed that exposure of human leukaemia 

(K562) cell line to SMFs (8.8 mT) caused DNA damage and arrest in G2/M phase 

and SMFs enhanced the anticancer effect of cisplatin (W.-F. Chen et al., 2010). 

Nie et al. demonstrated that exposure of melanoma cells (B16-F10) to LF-MF 

(7.5 Hz, 0.4 T, 43 days) induced an arrest of the cell cycle in the G2/M phase 

(Nie, Du, et al., 2013).   

Apoptosis is mediated by mitochondrial (intrinsic) and cell death receptor 

(extrinsic) pathways (Mohammad et al., 2015). Targeting pro-apoptotic and anti-

apoptotic proteins and mitochondrial membrane permeability, especially in the 

mitochondrial pathway, has become attractive in cancer therapies by contributing 

to the induction of apoptosis (Ko et al., 2007; Portt et al., 2011). Yuan et al. 

observed that exposure of nephroblastoma and neuroblastoma cells to LF-MF (50 

Hz, 5.1 mT, 2 h per day) inhibited cell proliferation, induced apoptosis and 

increased cisplatin efficacy in vivo (Yuan et al., 2018).  Gürhan et al. 

demonstrated that in human fibrosarcoma (HT-1080) cells exposed to SMFs, the 
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increase in intracellular ROS levels led to the release of cytochrome c into the 

cytoplasm, thereby triggering apoptotic cell death (Gurhan et al., 2021). Koh et 

al. reported that after MF (60 Hz, 48 h) exposure, intensity-dependent ROS 

accumulation occurred in prostate cancer (LNCaP, PC3, and DU145) cell lines 

and the cells were directed to apoptosis (Koh et al., 2008). So far, it has been 

established that miRNAs play a role in regulating a number of biological 

processes, such as autophagy and apoptosis (Yu et al., 2012). Xu et al. showed 

that LF-MFs inhibited growth of tumor and induced autophagic cell death by 

upregulating the expression level of miR-486, which plays a role in cell 

autophagy in lung cancer, in a Lewis Lung Cancer mouse model (Y. Xu et al., 

2017).  Although MF has been implicated in the induction of apoptosis and 

autophagy in a number of cancers, there are only a limited number of studies in 

this area and further research is needed. 

Angiogenesis has become a therapeutic target in chronic inflammation and 

cancer because of its importance in embryonic development, tumor growth, and 

metastatic spread (Z.-L. Liu et al., 2023). The migration of vascular endothelial 

cells has a significant role in the progression of angiogenesis of tumor cells 

regulated by a variety of anti-angiogenic and pro-angiogenic molecules. 

Targeting vascular endothelial growth factor (VEGF-A, VEGF) and vascular 

endothelial growth factor receptor-2 (VEGFR-2) is particularly important in 

cancer therapy (Ferrara et al., 2003). In the literature, Strelczyk et al. showed that 

SMF of 600 mT for 10 days suppressed angiogenesis and delayed vascular 

maturation in vivo by reducing vessel diameter and functional vessel density 

(Strelczyk et al., 2009). Williams et al. showed that C3H/HeJ mice treated with a 

pulsating magnetic field of 120 pulses per second (0, 10 mT, 15 mT, or 20 mT for 

10 minutes per day) significantly reduced tumor growth and vascularization 

(Williams et al., 2001). Monache et al. demonstrated that human umbilical vein 

endothelial cells (HUVEC) exposed to MF (50 Hz, 2mT) had decreased 

proliferative, migratory, and tube-like processes. Furthermore, MF treatment 

significantly downregulated the levels of VEGFR2 and decreased the ability of 

endothelial cells to form new vessels by affecting the VEGF signaling pathway 

(Delle Monache et al., 2013). Together, these findings suggest that MF therapy is 

a promising treatment modality that may have an impact on angiogenesis of 

tumor. 

The immune function of the organism plays an important role in tumor 

initiation and metastatic spread. Therefore, effective strategies to re-model the 

immune system in tumors are becoming a key element of cancer immunotherapy 

(Finck et al., 2020). Nie et al. showed that tumor-bearing mice treated with MF 

(7.5 Hz, 0.4 T) increased lifetime, suppressed cytokine production, including 
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keratinocyte-derived chemokine (KC), granulocyte colony-stimulating factor (G-

CSF), and interleukin-6 (IL-6) indicated that MF had an effect on improving 

immunity (Nie, Chen, et al., 2013).  As for tumor metastasis, a leading cause of 

death in cancer patients, occurs when cancer cells spread beyond the source site 

of a tumor (Tracey A. Martin, Lin Ye, Andrew J. Sanders, Jane Lane, n.d.). 

Therefore, inhibition of metastasis has been an important target of cancer 

treatment modalities. Song et al. showed that SMF can inhibit cell metastasis in 

ovarian cancer in a ROS-dependent manner (Song et al., 2021). Tofani et al. 

indicated that MF (5.5 mT, 50 Hz) significantly inhibited tumor growth and 

metastasis in breast cancer MDA-MB-435 cell line (Tofani et al., 2002). Nie et 

al. found that metastasis was suppressed in melanoma B16-F10 cells after MF 

(0.4 T and 7.5 Hz) exposure (Nie, Du, et al., 2013). Song et al. stated that SMFs 

can suppress ovarian cancer metastasis in vitro and in vivo (Song et al., 2021). 

 

4. Magnetic Fields in Combination Therapies 

The fact that cancer-related mortality rates are still very high despite current 

cancer treatments has necessitated the development of new strategies that are 

cost-effective and highly effective. Combination therapy, one of such approaches, 

has an important role in cancer treatment as it is a treatment method that combines 

two or more therapeutic agents (Yap et al., 2013). Compared to the monotherapy 

approach, which targets actively proliferating cells in a non-selective manner 

(without discriminating between healthy and cancerous cells), the synergistic 

effect of combining anticancer agents increases the efficacy of treatment 

(Partridge et al., 2001). Combination therapies aim to reduce toxicity and side 

effects that occur as a result of drug resistance caused by chemotherapy-induced 

high dosage and long-term treatment (Albain et al., 2008). In addition to reducing 

drug resistance, this treatment method provides therapeutic benefits such as 

inducing apoptosis, reducing tumor growth, cancer stem cell populations and 

metastatic potential (Mokhtari et al., 2013). In summary, as shown in Table 2, MF 

can be applied as an adjuvant therapy to improve the effects of chemotherapeutic 

drugs by inducing cell cycle arrest, apoptosis, and DNA damage in cancer 

treatment. 
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Table 2. Combinational approaches with magnetic field for cancer therapy 

Combinational 

approaches 
Type of cancer 

Application 

conditions 

Effect of 

application 
Ref. 

SMF + Adriamycin 
Human leukemia 

(K562)  

8.8 mT SMF for 12 

h, with Adriamycin 

(25 ng/ml) 

Cytotoxic effect 

Arrested G2/M 
phase 

Increased DNA 

damage 

• (Hao et al., 

2011) 

SMF  

+ Paclitaxel 
K562 cell line 

8.8 mT SMF for 24 

h, with Paclitaxel 

(10 ng/ml, 24 h) 

Inhibited the 

metabolic activity 

Arrested G2/M 
phase 

Increased cell 

membrane damage 

• (Sun et al., 

2012) 

SMF  

+ Cisplatin 

Ovarian 

carcinoma 

(Sensitive 

(A2780) and 

resistant 

(A2780CP)) 

15 mT SMF for 24, 

48 and 96 h) with 

Cisplatin (IC50 

values for 24, 48, 

and 96 h) 

Increased DNA 

damage  

Genotoxicity  

Induced apoptosis  

Induced necrosis 

 (Zafari et 

al., 2024) 

SMF  

+ Cisplatin 

Murine Lewis 

lung carcinomas 

(LLCs) 

3 mT SMF for 

35 min/day and 

cisplatin (3 mg/kg, 

i.p.) 

Inhibited cell 

proliferation  

Longer survival 

time 

Cytotoxic effect 

(Tofani, 

2003) 

SMF  

+ Doxorubicin  

Female B6C3F1 

mice with 

transplanted 

mammary 

adenocarcinoma 

110 mT SMF and 

doxorubicin  (10 

mg/kg, i.p.) 

Tumor regression 
(Gray et 

al., 2000) 

SMF  

+ Cisplatin 

Human cervical 

cancer (HeLa) 

10 mT SMF for 48 

h and cisplatin (IC50 

values) 

Decreased cell 

viability 

Increased ROS 

production  

(Kamalipo

oya et al., 

2017) 

PMF  

+Temozolomide 

Human 

glioblastoma 

(T98G) 

2 mT, 75 Hz PMF 

for 1 h/day and 

temozolomide (10 

μM for 24 h) 

Decreased cell 

proliferation   

Epigenetically 

influencing tumor 

suppressors and 

the regulation of 

oncogenes 

(Pasi et al., 

2016) 

LF-MF  

+Temozolomide 

Human 

glioblastoma 

(U87 and T98G) 

10 mT, 100 Hz LF-

MF for 144 h and 

temozolomide 

(100 μM) 

Increased ROS 

production 

(Akbarneja

d et al., 

2017) 

LF-MF  

+ 5-fluorouracil (5-

FU) 

MCF-7 cell line 

1 mT, 50 Hz LF-

MF for 12 h and 5-

fluorouracil (5-FU) 

(5 μM for 24 h) 

Decreased cell 

proliferation   

Cytotoxic effect 

Accumulation of 

cancer cells in S 

phase 

(Han et al., 

2018) 
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Extremely low-

frequency 

electromagnetic 

field (ELF-EMF)  

+ Folic acid-

modified magnetic 

nanoparticles (FA-

MNPs) 

Human 

hepatoma (BEL-

7402)  

0.7 mT, 100 Hz 

ELF-EMF and FA-

MNPs for 24 h 

Inhibited cell 

proliferation 

Induced apoptosis 

(B. Chen 

et al., 

2014)  

AMF+ 

Photothermal 

Therapy 

Malignant cell 

lines (SKOV3, 

PC3, and A431) 

12 mT, 110 kHz AC 

magnetic field, Iron 

oxide MNPs and 

laser irradiation 808 

nm at 0.3 W/cm2 

Dual action 

yielded complete 

apoptosis-

mediated cell 

death 

(Espinosa 

et al., 

2016) 

AMF + Immune 

Therapy 

4T1 (breast 

cancer) cell line 

1.7 mT, 

CoFe2O4@MnFe2

O4 NPs for 10 min 

at 50 °C (MHT) 

and α-PD-L1 

treatment 

The combined 

therapy 

demonstrated the 

great potentials in 

the fight against 

both primary and 

metastatic tumors 

(Pan et al., 

2020) 

 

5. Conclusion 

In conclusion, numerous studies have shown that different types of MF have 

different effects on tumor cells and that these effects are related to thermal and 

non-thermal mechanisms. This review discusses the potential of MFs in anti-

tumor therapies to suppress cancer cell proliferation, arrest the cell cycle, inhibit 

neovascularization, suppress metastasis, and promote cell death in both in vivo 

and in vitro models. In addition, the synergistic potential of MFs in combination 

with chemotherapeutic agents, photothermal therapy or immunotherapy was 

discussed, which might be more effective in combined anticancer therapy. The 

potential of MF therapy in oncology needs to be systematically investigated and 

elucidated in more detail with further studies.  
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